
Efficient FPGA Implementation of Steerable

Gaussian Smoothers

Arjun Joginipelly, Alvaro

Varela, Dimitrios Charalampidis
Electrical Engineering Department

University of New Orleans

New Orleans, LA, USA

Remy Schott
ECE Department

Florida Institute of Technology

Melbourne, FL, USA

Zachary Fitzsimmons
Computer Science Department

Siena College

Loudonville, New York, USA

Abstract— Smoothing filters have been extensively used in

image and video analysis. In particular, directional smoothers

have been employed in motion analysis, edge detection, line

parameter estimation, and texture analysis. Such applications

often necessitate the use of several directional filters oriented

at different angles. However, applying a large number of filters

commonly requires a significant amount of computing

resources. In such cases, real-time performance may be

possibly achieved through utilization of hardware devices

having parallel processing capabilities. Additionally,

techniques can take advantage of the inherent properties of

certain smoothing filters. Such a property is steerability, which

implies that the outputs of several filtering operations can be

linearly combined in order to produce the output of a

directional filter at an arbitrary orientation. Although several

efficient FPGA implementations of the convolution operation

have been presented in the literature for non-separable and

separable, research on steerable filter implementations on

FPGA is limited. In this paper, steerable Gaussian smoothers

are implemented on an FPGA platform. The technique is

compared with a software-based implementation. Performance

comparisons indicate that the FPGA technique provides

significant speed-up factor of at least ~6, utilizing only a small

percentage of the FPGA resources.

Keywords- Steerability; Directional filter; FPGAs; Gaussian

filters; Separable convolution;

I. INTRODUCTION

Directional or orientation filters [1] are widely used in
computer vision and image processing applications [9], such
as motion analysis, edge detection and texture analysis. In
general, image components, such as edges and lines, can be
characterized by a set of parameters including position,
orientation, width or size. One approach for obtaining the
response of a filter at any arbitrary position and orientation is
to tune the filter to all possible positions and orientations.
However, such an approach requires a large number of
computations, and is thus not easily implementable in real
time. An alternative, more efficient way, is to design a
family of basis filters [2] [3], so that a filter tuned at an
arbitrary position or orientation can be represented as a linear
combination of these basis filters. Therefore, the output of
the filter can be expressed as a weighted sum of the basis
filter outputs. Filters having this property are called steerable

filters.

Steerable smoothers have been used to efficiently smooth
images in several directions [1]. In general, smoothing can
be performed by convolving the original image with an
appropriate mask, such as a Gaussian mask. Convolution
[11], requires a significant amount of computational power
even if it is implemented on FPGA devices [7][8]. In order to
improve the performance of the convolution operation,
special filters can be considered. For instance, a reduction in
the number of multipliers can be achieved through the use of
separable filters [2][10]. A separable filter of size N × N can
be expressed as the convolution between two filters of sizes
N × 1 and 1 × N, respectively. Isotropic Gaussian filters and
Gaussian filters oriented at 0

o
 or 90

o
 are separable. However,

Gaussian filters oriented at an arbitrary direction are not
separable in general [2]. Therefore, separability alone is not
sufficient in designing efficient multidirectional Gaussian
filter banks.

In this paper, a Gaussian steerable multidirectional filter
bank implementation on FPGA is proposed, based on the
work presented in [1]. Although efficient implementations of
separable and non-separable 2D convolution techniques have
been explored in the past [7][8][9][10], there has been only
limited work in the literature related to steerable filter
implementations on FPGA [4][5][6]. In [4], a steerable
pyramid wavelet construction for image decomposition and
feature detection, and its implementation on FPGA was
presented. The filter coefficients were obtained in the Fourier
domain as the product of a radial frequency function, based
on the Erlang function, and an angular frequency function.
Some implementation issues, including the quantization of
filter coefficients and the error resulted due to the fixed point
coefficient representation were discussed. Some similar
issues are also discussed in this paper. In [5], steerable filters
were used as edge detectors for the purpose of lane detection.
The FPGA implementation concentrated only on the first and
second order derivatives of 2D Gaussian functions with fixed
orientation to reduce computational complexity. In other
words, the particular filters used are appropriate for a real
time FPGA implementation owing to the fact that they can
be steered by a small number of basis filters. On the other
hand, if Gaussian smoothers, especially those with strong
directional characteristics, were to be steered to an arbitrary
direction following an approach similar to the ones presented
in [4] and [5], then a large number of basis filters would be The authors would like to thank the National Science Foundation

(NSF) for their support through the REU project 0851618

44th IEEE Southeastern Symposium on System Theory
University of North Florida, Jacksonville, FL
March 11-13, 2012

978-1-4577-1493-1/12/$26.00 ©2012 IEEE 78

required. Instead, the implementation employed in this work
ensures that, regardless of the desired angular resolution,
Gaussian smoothers can be steered via the application of
three 1D filtering operations, as described next.

In [1], a Gaussian steerable multidirectional filter bank
consisting of M directional 2D Gaussian smoothers is
implemented by decomposing each of the M smoothers in
three 1D Gaussian filters. The first two 1D filters are
employed horizontally and vertically, while the third 1D
filter is applied in the direction of interest. The first two 1D
filters are essentially equivalent to a 2D separable Gaussian
filter, and they are independent of the filter orientation. As a
result, they are applied only once, and they do not
significantly affect the resource utilization, regardless of the
number of filter orientations, M, used in the filter bank. The
third 1D filter needs to be employed M times. Nevertheless,
some initial smoothing has already been applied to the image
owing to the first two 1D filters. As a result, a down-
sampling factor can be introduced to reduce the number of
operations. Therefore, the resource requirements are
sufficiently low so that pipelining techniques can be used for
a real-time implementation.

The technique in [1] is discussed in more detail in section
2. Since the steerable filter includes a separable filter
component, separable filter implementations are discussed in
section 3. In section 4 the steerable FPGA implementation is
presented. Section 5 presents experimental results. Finally,
section 6 closes with some concluding remarks and future
work.

II. BACKGROUND

Steerability implies that the output O�(x,y) at location
(x,y) of a filtering operation using a filter oriented at an angle
� can be computed as the linear combination of a finite set of
M outputs {O�0 (x, y), O�1 (x, y), ……….., O�M-1 (x, y) }
obtained by applying the same filter oriented at directions �0,
�1,…………,�M-1, respectively. Using a more general
definition, the M outputs can be obtained using a set of M
basis filters, which are not necessarily rotated versions of the
same filter. It has been shown [1] that a 2D steerable filter
for a directional Gaussian smoother with standard deviations

σx and σy (where σy is the standard deviation along the axis
of filter orientation) can be expressed as:

() () ()() ()�
−=

−−=
R

Rr

D
iso rgryrxgyxg

1
sin,cos, θθθ (1)

where it was assumed that the size of g
1D

(r) is equal to
2R+1. The filter described in (1) can be applied to image I(x,
y) in two steps. In the first step, the filter giso(x, y) is applied
to the image:

),(),(),(yxgyxIyxI isoiso ∗= (2)

In the second step, the following operation is applied to
the image Iiso(x, y).

() () ()() ()�
−=

−−=
R

Rr

D
iso rgryrxIyxI

1
sin,cos, θθθ (3)

The operations described in equations (2) and (3) are
equivalent to a 2D convolution between image I(x,y) and a
Gaussian directional filter (DSF) oriented at direction �. The
function giso(x,y) describes a separable filter and can be
implemented in an efficient manner. More specifically,
giso(x,y) can be expressed as a product of two 1D Gaussian
filters, namely giso(x, y) = gx(x)gy(y). Hence giso(x, y) can be
applied to I(x,y) by first filtering I(x,y) horizontally using
gx(x) and then vertically using gy(y). Equation (3) describes a
linear combination of shifted versions of the image, Iiso(x – r
cos (�), y – r sin (�)), which depend on the filtering direction
�. The coefficients of the linear combination are equal to the
values of g

1D
(r).

This implementation is steerable in the sense that the
final output I�(x, y) is expressed as a linear combination of
output images, Iiso(x – r cos(�),y – r sin(�)), which are
obtained using a set of 2R+1 filters, giso(x – r cos(�),y – r
sin(�)), for r = -R, …, R. The isotropic filter giso(x, y) is low
pass, while almost 100% of its energy is included within the

frequency band [-3/σx, 3/σx]. The output, Iiso(x, y), obtained
by filtering the input image I(x, y) with giso(x, y) is band-
limited within the frequency range (-�, �] in any direction �.
Thus, equation (3) can be modified without introducing
significant aliasing as follows:

())()sin(),cos(),(
1

]/[

]/[

kDgkDykDxIyxI
D

DR

DRk
iso�

−=

−−= θθθ (4)

where

�
�

�

�

�
�

�

�

−
−

−

==
)(2

)(
exp

)(2

1
)()(

22

2

22

1

xyxy

D kD
kDgrg

σσσσπ

 (5)

and

3

xD
πσ

= � 1 is a down sampling factor. (6)

In equation (4), [R/D] is equal to the integer part of
[R/D]. Since the range of unique frequencies in discrete
signals is (-�, �], D can be as large as the largest integer not

greater than �σx/3, so that aliasing does not occur. The goal
of introducing a down-sampling factor is to further reduce
the computational complexity of the filtering operation.

III. DISCUSSION ON SEPARABILITY

In this section we briefly discuss two different separable
techniques, an unpipelined and a pipelined, for the purpose
of implementing the filter mask giso(x,y). As a reminder,
giso(x,y) is a separable filter and is thus equivalent to the
convolution of a vertical and a horizontal 1D Gaussian
masks. Throughout this section, it is assumed that the input
image is of size N × N and giso(x,y) of size P × P. Each pixel
in the input image and the coefficients of giso(x,y) are
represented using 8 bits. The block diagram representation of
unpipelined separable convolution method is shown in Fig.
1. In this method, the image is first convolved with the
vertical 1D Gaussian mask and second with the horizontal
Gassian mask. At each adder stage rescaling is performed to
ensure that the intensity value of the output pixels does not
exceed 255 (8 bits). Using this method, 2 clock cycles are
required to obtain the required output pixel, independent of
image and mask sizes.

79

Alternatively, a pipelining technique can be used to
obtain higher throughput. Partial intermediate convolution
results i.e. N rows and P columns of the image are stored in a
FIFO or 2D array. This method requires only 1 clock cycle
per pixel, regardless of the image and filter sizes. The block
diagram representation of this method is shown in Fig. 2:

The above mentioned two separable techniques were
implemented on Xilinx Virtex 2 Pro [12] i.e., XU2VP30-
ff896 (with a speed grade of -7) for an input image of
158×158 and a Gaussian mask of 7×7. The comparisons are
summarized in Table I in terms of resource utilization and
processing time. For larger image, number of BRAMS
required increases but the LUTs or resources used scale up
the same. It should be mentioned at this point that other
resources such as SRAM, Flash memory, are not utilized.

TABLE I. COMPARISON OF SEPARABLE TECHNIQUES

Method

LUT

27392

IOB

556

BRAM

136

Embedded

Multipliers

136

Clocks

per

Pixel

Unpipelined

Separable

Conv

4292

(16%)

10

(2%)

26

(19%)

14

(10%)

2

Pipelined

Separable

Conv

14538

(53%)

10

(2%)

13

(9.6%)

14

(10%)

1

Based on Table I, it can be observed that for the
unpipelined separable convolution, where intermediate
results are stored in BRAM, the performance is reduced due
to the access limitations imposed by the BRAM (only 1 pixel
per clock cycle - single port access, or 2 pixels per clock
cycle - dual port access can be accessed). Using single port
access, the throughput in this method is 2 clock cycles per
pixel. In the pipelined separable convolution, the throughput
of 1 clock cycle per pixel is obtained by saving partial
intermediate results in a FIFO or 2D array. However,
significantly more hardware resources are required.

IV. STEERABLE FPGA IMPLEMENTATION

The last stage of the Gaussian steerable approach
presented in [1] uses an operation equivalent to 1D filtering
at the direction of interest. This operation is applied to the
smoothed image obtained by the previous stages, which
include filtering of the original image using an isotropic
Gaussian filter. As mentioned earlier, the isotropic Gaussian
filter can be implemented in a separable manner. In this
work, both separable implementations, unpipelined and
pipelined, presented in section 3 were used. The Gaussian
steerable filter implementation is based on equations (4) and
(5). This Gaussian mask can be rotated in different directions
to obtain steerable output at different directions. The block
diagram representation of the steerable implementation is
shown in Fig. 3.

 Figure 3. Block diagram representation of steerable implementation in

horizontal and vertical directions.

Figure 1. Block diagram representation of unpipelined separable

convolution

Figure 2. Block diagram representation of pipelined separable

 convolution

80

The smoothed images obtained using the unpipelined and
pipelined separable methods are stored in BRAMs. A
controller is designed to read pixels from the smoothed
image in horizontal and vertical directions. It has to be
mentioned at this point that a decimation factor using
equation (6) is used to reduce the computational complexity.
That is, instead of reading consecutive pixels from the image
(and filter mask coefficients) for processing, only 1 out of D
consecutive image pixels (and filter mask coefficients) are
read per output image pixel. A second controller, namely the
pixel and mask controller, provides the required pixels to the
multiplier and adder blocks. An additional rescaling step is
performed at the adder stage to ensure that the intensity value
of the output pixels remains between 0 and 255.

The RTL schematic that was obtained using ISE10.1 is
shown in Fig. 5 for two steerable filter directions. The
leftmost part of the circuit (C1) corresponds to the isotropic
Gaussian filter operation, while the middle (C2) and
rightmost (C3) parts implement in parallel the overall
steerable filter in the horizontal and vertical direction.
Additional arbitrary orientations may be obtained in parallel
by replicating C2 or C3 a number of times equal to the
number of different filter orientations.

TABLE II. UNPIPELINED AND PIPELINED STEERABLE

IMPLEMENTATION

Method

LUT
27392

IOB
556

BRAM

136

Embedded
Multipliers

136

Clocks

per
Pixel

Unpipelined

Steerable

6358
(24%)

22
(4%)

52
(38%)

32
(24%)

3

Pipelined
Steerable

22464
(82%)

22
(4%)

39
(29%)

32
(24%)

2

V. EXPERIMENTAL RESULTS

In this section, experimental results are obtained for an
image of size 158 × 158, and a separable Gaussian mask of 7
× 7 using the steerable filter implementation. Both separable
methods described in section 3 were considered. As
proposed in [1] and summarized in section II, isotropic
filtering, which is equivalent to two 1D filtering operations
(a horizontal and a vertical), followed by a directional 1D
filtering operation represents an efficient steerable filtering
implementation. In this work, results are presented for

directional Gaussian smoothers with standard deviation σx =

3 and σy = 5. As a reminder, these two standard deviations do
not necessarily correspond to the horizontal and vertical
extents of the filter. They rather represent the filter extent

with respect to the direction of filter (σy) and the angle

vertical to it (σx), which can be arbitrary. Based on these
standard deviation values, the directional 1D Gaussian mask
is of size 1 × 9, while the 1D masks associated to the
isotropic Gaussian mask are of size 1 × 7 and 7 × 1.
Depending on which of the two separable implementations is
employed, two different steerable implementations are
obtained. The design is implemented on Xilinx Virtex 2 Pro
[12] i.e., XU2VP30-ff896, with FPGA clock operating at a
maximum frequency of 100MHz, in VHDL language using
Xilinx ISE 10.1 Software. The comparison between
unpipelined and pipelined steerable implementation are
summarized in Table 3 in terms of resource utilization and
processing time.

From Table II, the following observations can be drawn:

• Steerable implementation in horizontal and

vertical directions using the unpipelined

separable convolution method requires fewer

resources and a throughput of 3 clocks cycles

per pixel is achieved.

• Steerable implementation in horizontal and

vertical direction using the pipelined separable

convolution method requires huge resources and

increase with the size of the input image.

However an optimum performance of 2 clocks

cycles per pixel is achieved.

Through this comparison, it can be observed that there is
a trade-off among resource utilization and processing time.
Hence the architecture selection can be done depending on
the user constraints on whether to go with less resources and
more processing time or more resources and less processing
time.

Figure 5. RTL schematic generated by synthesis.

C1 C2

C3

81

It can be seen that the pipelined steerable implementation
utilizes almost all the resources available on the board. This
can be avoided by storing the original and intermediate
processed images in the SDRAM or Flash Memory, which is
part of our future work.

VI. CONCLUSION AND FUTURE WORK

In this paper, an efficient steerable filter implementation
on FPGA has been presented. Similarly to previous
techniques, the proposed approach takes advantage of the
separable nature of isotropic Gaussian filters. However, it
also employs a steerable implementation in which 2D
filtering operations utilizing directional Gaussian smoothing
filters, which are not separable in general, are replaced by an
equivalent set of three 1D filtering operations. The first two
operations are performed in a pipelined manner, in order to
achieve high throughput that approaches 2 clock cycles per
pixel. The third 1D filtering operation is employed
consecutively to the first two operations in order to conserve
memory resources.

In addition to using 1D filters, supplementary
implementation aspects have been taken into account in
order to reduce the on-chip resource utilization. For instance,
the rescaling factor, which is effectively removing LSB bits
introduced at each adder stage, allows reduction of the
number of embedded multipliers.

As part of future work, the technique will be modified to
reduce the number of clock cycles per pixel down to 1, by
pipelining the pass of the third 1D filter. Of course, it is
expected that such pipelining will also decrease the BRAM
requirements since only part of the image will need to be
stored in the BRAM after the first two 1D passes. However,
it will also increase the multiplier usage, since the number of
simultaneous multiplications will increase. A solution to the
problem is to use block-wise processing by breaking down
the image into overlapping zones.

Current results from Table III confirm that the pipelined
steerable filter implementation on FPGA (100MHz clock) is
significantly faster compared to a C implementation [1]
executed on a PC with significantly higher clock speed (Dual
Core 2 2.33-GHz).

TABLE III. FPGA VS PC COMPARISON OF EXECUTION TIMES

Method

Unpipelined

Steerable FPGA

Implementation

Pipelined

Steerable FPGA

Implementation

C based

Steerable

Implementation

Execution
Time for a
158x158

image

0,656 ms 0.492 ms 6.5 ms

ACKNOWLEDGMENT

The authors would like to thank Mr. Rajesh Chari Chelpuri,
MTech (IIT Delhi) and Dr. James Haralambides, Professor at
Barry University, Department of Math and Computer
Science, for their helpful comments and support.

REFERENCES

[1] Dimitrios Charalampidis, “ Efficient Directional Gaussian

Smoothers”, IEEE Geoscience and Remote Sensing Letters,

July 2009.

[2] V. Lakshmanan, “A Separable Filter for Directional

Smoothing”, IEEE Geoscience and Remote Sensing Letters,

July 2004.

[3] W.Freeman and E.Adelson, “The Design and Use of

Steerable Filters”, IEEE Transaction on Pattern Analysis and

Machine Intelligence, pp. 891-906, 1991.

[4] C.S Bouganis, P.Y.K Cheung, J.Ng and A. Bharath, “ A

Steerable Complex Wavelet Construction and its

Implementation on FPGA”, in Proc. International Conference

on Field Programmable Logic and Applications, pp.394-403,

2004

[5] Erke Shang, Jian Li, Xiangjing An and Hangen He, “ Lane

Detection using Steerable Filters and FPGA Based

Implementation”, International Conference on Image and

Graphics, 2011.

[6] S. Kestur, D. Dantara and V. Narayanan, “ A streaming

FPGA Implementation of a Steerable Filter for Real Time

Applications(abstract only)”, Proceeding of 19th

ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, 2011.

[7] Hui Zhang, Mingxin Xia, and Guangshu Hu, “A

Multiwindow Partial Buffering Scheme for FPGA Based 2-D

Convolvers, IEEE Transaction on Circuits and Systems, Feb

2007.

[8] Franscisco Cardells-Tormo, Pep-Lluis Molinet, “ Area

Efficient 2-D Shift Variant Convolvers for FPGA Based

Digital Image Processing”, IEEE Transaction on Circuits and

Systems, Feb 2006.

[9] D. Venkateshwar Rao and M. Venkatesan , “Implementation

and Evaluation of Image Processing Algorithms on

Reconfigurable Architecture using C-based Hardware

Descriptive Languages”, International Journal of Engineering

and Applied Sciences, 2006.

[10] M.S. Andrews, “ Architectures for Generalized 2D FIR

Filtering using Separable Filter Structures”, Proceeding of

Acoustics, Speech and Signal Processing, 1999.

[11] R.C. Gonzalez and R.E. Woods. “Digital Image Processing”,

Prentice Hall 2002.

[12] Xilinx,”Virtex-II Pro Platform FPGA User Guide-

UG012”,v4.2, Nov 2007

82

