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Abstract— Smoothing filters have been extensively used in 

image and video analysis. In particular, directional smoothers 

have been employed in motion analysis, edge detection, line 

parameter estimation, and texture analysis. Such applications 

often necessitate the use of several directional filters oriented 

at different angles. However, applying a large number of filters 

commonly requires a significant amount of computing 

resources. In such cases, real-time performance may be 

possibly achieved through utilization of hardware devices 

having parallel processing capabilities. Additionally, 

techniques can take advantage of the inherent properties of 

certain smoothing filters. Such a property is steerability, which 

implies that the outputs of several filtering operations can be 

linearly combined in order to produce the output of a 

directional filter at an arbitrary orientation. Although several 

efficient FPGA implementations of the convolution operation 

have been presented in the literature for non-separable and 

separable, research on steerable filter implementations on 

FPGA is limited. In this paper, steerable Gaussian smoothers 

are implemented on an FPGA platform. The technique is 

compared with a software-based implementation. Performance 

comparisons indicate that the FPGA technique provides 

significant speed-up factor of at least ~6, utilizing only a small 

percentage of the FPGA resources. 
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I.  INTRODUCTION  

Directional or orientation filters [1] are widely used in 
computer vision and image processing applications [9], such 
as motion analysis, edge detection and texture analysis. In 
general, image components, such as edges and lines, can be 
characterized by a set of parameters including position, 
orientation, width or size. One approach for obtaining the 
response of a filter at any arbitrary position and orientation is 
to tune the filter to all possible positions and orientations. 
However, such an approach requires a large number of 
computations, and is thus not easily implementable in real 
time. An alternative, more efficient way, is to design a 
family of basis filters [2] [3], so that a filter tuned at an 
arbitrary position or orientation can be represented as a linear 
combination of these basis filters. Therefore, the output of 
the filter can be expressed as a weighted sum of the basis 
filter outputs. Filters having this property are called steerable 

filters. 

Steerable smoothers have been used to efficiently smooth 
images in several directions [1]. In general, smoothing can 
be performed by convolving the original image with an 
appropriate mask, such as a Gaussian mask. Convolution 
[11], requires a significant amount of computational power 
even if it is implemented on FPGA devices [7][8]. In order to 
improve the performance of the convolution operation, 
special filters can be considered. For instance, a reduction in 
the number of multipliers can be achieved through the use of 
separable filters [2][10]. A separable filter of size N × N can 
be expressed as the convolution between two filters of sizes 
N × 1 and 1 × N, respectively. Isotropic Gaussian filters and 
Gaussian filters oriented at 0

o
 or 90

o
 are separable. However, 

Gaussian filters oriented at an arbitrary direction are not 
separable in general [2]. Therefore, separability alone is not 
sufficient in designing efficient multidirectional Gaussian 
filter banks. 

In this paper, a Gaussian steerable multidirectional filter 
bank implementation on FPGA is proposed, based on the 
work presented in [1]. Although efficient implementations of 
separable and non-separable 2D convolution techniques have 
been explored in the past [7][8][9][10], there has been only 
limited work in the literature related to steerable filter 
implementations on FPGA [4][5][6]. In [4], a steerable 
pyramid wavelet construction for image decomposition and 
feature detection, and its implementation on FPGA was 
presented. The filter coefficients were obtained in the Fourier 
domain as the product of a radial frequency function, based 
on the Erlang function, and an angular frequency function. 
Some implementation issues, including the quantization of 
filter coefficients and the error resulted due to the fixed point 
coefficient representation were discussed. Some similar 
issues are also discussed in this paper. In [5], steerable filters 
were used as edge detectors for the purpose of lane detection. 
The FPGA implementation concentrated only on the first and 
second order derivatives of 2D Gaussian functions with fixed 
orientation to reduce computational complexity. In other 
words, the particular filters used are appropriate for a real 
time FPGA implementation owing to the fact that they can 
be steered by a small number of basis filters. On the other 
hand, if Gaussian smoothers, especially those with strong 
directional characteristics, were to be steered to an arbitrary 
direction following an approach similar to the ones presented 
in [4] and [5], then a large number of basis filters would be The authors would like to thank the National Science Foundation 
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required. Instead, the implementation employed in this work 
ensures that, regardless of the desired angular resolution, 
Gaussian smoothers can be steered via the application of 
three 1D filtering operations, as described next. 

In [1], a Gaussian steerable multidirectional filter bank 
consisting of M directional 2D Gaussian smoothers is 
implemented by decomposing each of the M smoothers in 
three 1D Gaussian filters. The first two 1D filters are 
employed horizontally and vertically, while the third 1D 
filter is applied in the direction of interest. The first two 1D 
filters are essentially equivalent to a 2D separable Gaussian 
filter, and they are independent of the filter orientation. As a 
result, they are applied only once, and they do not 
significantly affect the resource utilization, regardless of the 
number of filter orientations, M, used in the filter bank. The 
third 1D filter needs to be employed M times. Nevertheless, 
some initial smoothing has already been applied to the image 
owing to the first two 1D filters. As a result, a down-
sampling factor can be introduced to reduce the number of 
operations. Therefore, the resource requirements are 
sufficiently low so that pipelining techniques can be used for 
a real-time implementation. 

The technique in [1] is discussed in more detail in section 
2. Since the steerable filter includes a separable filter 
component, separable filter implementations are discussed in 
section 3. In section 4 the steerable FPGA implementation is 
presented. Section 5 presents experimental results. Finally, 
section 6 closes with some concluding remarks and future 
work. 

II. BACKGROUND 

Steerability implies that the output O�(x,y) at location 
(x,y) of a filtering operation using a filter oriented at an angle 
� can be computed as the linear combination of a finite set of 
M outputs {O�0 (x, y), O�1 (x, y), ……….., O�M-1 (x, y) } 
obtained by applying the same filter oriented at directions �0, 
�1,…………,�M-1, respectively. Using a more general 
definition, the M outputs can be obtained using a set of M 
basis filters, which are not necessarily rotated versions of the 
same filter. It has been shown [1] that a 2D steerable filter 
for a directional Gaussian smoother with standard deviations 

σx and σy (where σy is the standard deviation along the axis 
of filter orientation) can be expressed as: 

( ) ( ) ( )( ) ( )�
−=

−−=
R
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D
iso rgryrxgyxg
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sin,cos, θθθ  (1) 

where it was assumed that the size of g
1D

(r) is equal to 
2R+1. The filter described in (1) can be applied to image I(x, 
y) in two steps. In the first step, the filter giso(x, y) is applied 
to the image: 

),(),(),( yxgyxIyxI isoiso ∗=  (2) 

In the second step, the following operation is applied to 
the image Iiso(x, y). 
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sin,cos, θθθ  (3) 

The operations described in equations (2) and (3) are 
equivalent to a 2D convolution between image I(x,y) and a 
Gaussian directional filter (DSF) oriented at direction �. The 
function giso(x,y) describes a separable filter and can be 
implemented in an efficient manner. More specifically, 
giso(x,y) can be expressed as a product of two 1D Gaussian 
filters, namely giso(x, y) = gx(x)gy(y). Hence giso(x, y) can be 
applied to I(x,y) by first filtering I(x,y) horizontally using 
gx(x) and then vertically using gy(y). Equation (3) describes a 
linear combination of shifted versions of the image, Iiso(x – r 
cos (�), y – r sin (�)), which depend on the filtering direction 
�. The coefficients of the linear combination are equal to the 
values of g

1D
(r). 

This implementation is steerable in the sense that the 
final output I�(x, y) is expressed as a linear combination of 
output images, Iiso(x – r cos(�),y – r sin(�)), which are 
obtained using a set of 2R+1 filters, giso(x – r cos(�),y – r 
sin(�)), for r = -R, …, R. The isotropic filter giso(x, y) is low 
pass, while almost 100% of its energy is included within the 

frequency band [-3/σx, 3/σx]. The output, Iiso(x, y), obtained 
by filtering the input image I(x, y) with giso(x, y) is band-
limited within the frequency range (-�, �] in any direction �. 
Thus, equation (3) can be modified without introducing 
significant aliasing as follows: 
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and 

3

xD
πσ

= � 1 is a down sampling factor. (6) 

In equation (4), [R/D] is equal to the integer part of 
[R/D]. Since the range of unique frequencies in discrete 
signals is (-�, �], D can be as large as the largest integer not 

greater than �σx/3, so that aliasing does not occur. The goal 
of introducing a down-sampling factor is to further reduce 
the computational complexity of the filtering operation. 

III. DISCUSSION ON SEPARABILITY 

In this section we briefly discuss two different separable 
techniques, an unpipelined and a pipelined, for the purpose 
of implementing the filter mask giso(x,y).  As a reminder, 
giso(x,y) is a separable filter and is thus equivalent to the 
convolution of a vertical and a horizontal 1D Gaussian 
masks. Throughout this section, it is assumed that the input 
image is of size N × N and giso(x,y) of size P × P. Each pixel 
in the input image and the coefficients of giso(x,y) are 
represented using 8 bits. The block diagram representation of 
unpipelined separable convolution method is shown in Fig. 
1. In this method, the image is first convolved with the 
vertical 1D Gaussian mask and second with the horizontal 
Gassian mask. At each adder stage rescaling is performed to 
ensure that the intensity value of the output pixels does not 
exceed 255 (8 bits). Using this method, 2 clock cycles are 
required to obtain the required output pixel, independent of 
image and mask sizes. 
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Alternatively, a pipelining technique can be used to 
obtain higher throughput. Partial intermediate convolution 
results i.e. N rows and P columns of the image are stored in a 
FIFO or 2D array. This method requires only 1 clock cycle 
per pixel, regardless of the image and filter sizes. The block 
diagram representation of this method is shown in Fig. 2: 

The above mentioned two separable techniques were 
implemented on Xilinx Virtex 2 Pro [12] i.e., XU2VP30-
ff896 (with a speed grade of -7) for an input image of 
158×158 and a Gaussian mask of 7×7. The comparisons are 
summarized in Table I in terms of resource utilization and 
processing time. For larger image, number of BRAMS 
required increases but the LUTs or resources used scale up 
the same. It should be mentioned at this point that other 
resources such as SRAM, Flash memory, are not utilized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE I.  COMPARISON OF SEPARABLE TECHNIQUES 

Method 

 

LUT 

27392 

IOB 

556 

BRAM 

136 

Embedded 

Multipliers 

136 

Clocks 

per 

Pixel 

Unpipelined 

Separable 

Conv 

4292 

(16%) 

10 

(2%) 

26 

(19%) 

14 

(10%) 

2 

 

Pipelined 

Separable 

Conv 

14538 

(53%) 

10 

(2%) 

13 

(9.6%) 

14 

(10%) 

1 

 

 

Based on Table I, it can be observed that for the 
unpipelined separable convolution, where intermediate 
results are stored in BRAM, the performance is reduced due 
to the access limitations imposed by the BRAM (only 1 pixel 
per clock cycle - single port access, or 2 pixels per clock 
cycle - dual port access can be accessed). Using single port 
access, the throughput in this method is 2 clock cycles per 
pixel. In the pipelined separable convolution, the throughput 
of 1 clock cycle per pixel is obtained by saving partial 
intermediate results in a FIFO or 2D array. However, 
significantly more hardware resources are required. 

IV. STEERABLE FPGA IMPLEMENTATION 

The last stage of the Gaussian steerable approach 
presented in [1] uses an operation equivalent to 1D filtering 
at the direction of interest. This operation is applied to the 
smoothed image obtained by the previous stages, which 
include filtering of the original image using an isotropic 
Gaussian filter. As mentioned earlier, the isotropic Gaussian 
filter can be implemented in a separable manner. In this 
work, both separable implementations, unpipelined and 
pipelined, presented in section 3 were used. The Gaussian 
steerable filter implementation is based on equations (4) and 
(5). This Gaussian mask can be rotated in different directions 
to obtain steerable output at different directions. The block 
diagram representation of the steerable implementation is 
shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3. Block diagram representation of steerable implementation in 

horizontal and vertical directions. 

Figure 1. Block diagram representation of unpipelined separable 

convolution 

Figure 2. Block diagram representation of pipelined separable 

 convolution 
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The smoothed images obtained using the unpipelined and 
pipelined separable methods are stored in BRAMs. A 
controller is designed to read pixels from the smoothed 
image in horizontal and vertical directions. It has to be 
mentioned at this point that a decimation factor using 
equation (6) is used to reduce the computational complexity. 
That is, instead of reading consecutive pixels from the image 
(and filter mask coefficients) for processing, only 1 out of D 
consecutive image pixels (and filter mask coefficients) are 
read per output image pixel. A second controller, namely the 
pixel and mask controller, provides the required pixels to the 
multiplier and adder blocks. An additional rescaling step is 
performed at the adder stage to ensure that the intensity value 
of the output pixels remains between 0 and 255. 

The RTL schematic that was obtained using ISE10.1 is 
shown in Fig. 5 for two steerable filter directions. The 
leftmost part of the circuit (C1) corresponds to the isotropic 
Gaussian filter operation, while the middle (C2) and 
rightmost (C3) parts implement in parallel the overall 
steerable filter in the horizontal and vertical direction. 
Additional arbitrary orientations may be obtained in parallel 
by replicating C2 or C3 a number of times equal to the 
number of different filter orientations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE II.  UNPIPELINED AND PIPELINED STEERABLE 

IMPLEMENTATION 

 
Method 

 

 
LUT 
27392 

 
IOB 
556 

 
BRAM 

136 

 
Embedded 
Multipliers 

136 

 
Clocks 

per 
Pixel 

 
Unpipelined 

Steerable 
 

6358 
(24%) 

22 
(4%) 

52 
(38%) 

32 
(24%) 

3 
 

Pipelined 
Steerable 

22464 
(82%) 

22 
(4%) 

39 
(29%) 

32 
(24%) 

2 
 

V. EXPERIMENTAL RESULTS 

In this section, experimental results are obtained for an 
image of size 158 × 158, and a separable Gaussian mask of 7 
× 7 using the steerable filter implementation. Both separable 
methods described in section 3 were considered. As 
proposed in [1] and summarized in section II, isotropic 
filtering, which is equivalent to two 1D filtering operations 
(a horizontal and a vertical), followed by a directional 1D 
filtering operation represents an efficient steerable filtering 
implementation. In this work, results are presented for 

directional Gaussian smoothers with standard deviation σx = 

3 and σy = 5. As a reminder, these two standard deviations do 
not necessarily correspond to the horizontal and vertical 
extents of the filter. They rather represent the filter extent 

with respect to the direction of filter (σy) and the angle 

vertical to it (σx), which can be arbitrary. Based on these 
standard deviation values, the directional 1D Gaussian mask 
is of size 1 × 9, while the 1D masks associated to the 
isotropic Gaussian mask are of size 1 × 7 and 7 × 1. 
Depending on which of the two separable implementations is 
employed, two different steerable implementations are 
obtained. The design is implemented on Xilinx Virtex 2 Pro 
[12] i.e., XU2VP30-ff896, with FPGA clock operating at a 
maximum frequency of 100MHz, in VHDL language using 
Xilinx ISE 10.1 Software. The comparison between 
unpipelined and pipelined steerable implementation are 
summarized in Table 3 in terms of resource utilization and 
processing time. 

From Table II, the following observations can be drawn: 

• Steerable implementation in horizontal and 

vertical directions using the unpipelined 

separable convolution method requires fewer 

resources and a throughput of 3 clocks cycles 

per pixel is achieved. 

• Steerable implementation in horizontal and 

vertical direction using the pipelined separable 

convolution method requires huge resources and 

increase with the size of the input image. 

However an optimum performance of 2 clocks 

cycles per pixel is achieved. 

Through this comparison, it can be observed that there is 
a trade-off among resource utilization and processing time. 
Hence the architecture selection can be done depending on 
the user constraints on whether to go with less resources and 
more processing time or more resources and less processing 
time. 

Figure 5. RTL schematic generated by synthesis. 

C1                                    C2 

C3  
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It can be seen that the pipelined steerable implementation 
utilizes almost all the resources available on the board. This 
can be avoided by storing the original and intermediate 
processed images in the SDRAM or Flash Memory, which is 
part of our future work.  

VI. CONCLUSION AND FUTURE WORK 

In this paper, an efficient steerable filter implementation 
on FPGA has been presented. Similarly to previous 
techniques, the proposed approach takes advantage of the 
separable nature of isotropic Gaussian filters. However, it 
also employs a steerable implementation in which 2D 
filtering operations utilizing directional Gaussian smoothing 
filters, which are not separable in general, are replaced by an 
equivalent set of three 1D filtering operations. The first two 
operations are performed in a pipelined manner, in order to 
achieve high throughput that approaches 2 clock cycles per 
pixel. The third 1D filtering operation is employed 
consecutively to the first two operations in order to conserve 
memory resources. 

In addition to using 1D filters, supplementary 
implementation aspects have been taken into account in 
order to reduce the on-chip resource utilization. For instance, 
the rescaling factor, which is effectively removing LSB bits 
introduced at each adder stage, allows reduction of the 
number of embedded multipliers. 

As part of future work, the technique will be modified to 
reduce the number of clock cycles per pixel down to 1, by 
pipelining the pass of the third 1D filter. Of course, it is 
expected that such pipelining will also decrease the BRAM 
requirements since only part of the image will need to be 
stored in the BRAM after the first two 1D passes. However, 
it will also increase the multiplier usage, since the number of 
simultaneous multiplications will increase. A solution to the 
problem is to use block-wise processing by breaking down 
the image into overlapping zones. 

Current results from Table III confirm that the pipelined 
steerable filter implementation on FPGA (100MHz clock) is 
significantly faster compared to a C implementation [1] 
executed on a PC with significantly higher clock speed (Dual 
Core 2 2.33-GHz). 

TABLE III.  FPGA VS PC COMPARISON OF EXECUTION TIMES 

 

Method 

 

Unpipelined 

Steerable FPGA 

Implementation 

 

Pipelined 

Steerable FPGA 

Implementation 

 

C based 

Steerable 

Implementation 

Execution 
Time for a 
158x158 

image 

0,656 ms 0.492 ms 6.5 ms 
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