College of the Holy Cross, Fall Semester, 2016
Math 242, Midterm 3 Practice Questions
Solutions

1. (a) Write the definition of lim f(z) = L.

Tr—cC

Solution. Let f be defined in some deleted neighborhood of ¢. Then lim f(z) = L if

r—cC

for every € > 0 there exists some § > 0 such that |f(z) — L| < € for every = such that
0<|z—c|l <6é.
(b) Use the definition to prove that lilré 2%+ 2z = 15.
r—r

Solution. First write |2% 4 2z — 15| = |z — 3|z +5|. Next let 6; = 1. If 0 < |z — 3| < 1,
then we have 2 < z < 4,507 < x+5 < 9 and thus |z + 5 < 9. Hence we have
|z — 3[|z 4+ 5] < 9]z — 3| < e when [z — 3] < §. Solet §, = § and define  min{dy, s }.
Then, when 0 < [z — 3| < § we have [z — 3| <1 and |z — 3| < §, so |z + 5] <9 and thus

|x2+2x—15|:|x+5||x—3|§9|x—3\<9§:e.

(c) Use the definition to prove that lir% g3 =2,
b d

Solution. First, using the equation a® — b* = (a — b)(a® + ab + b?) with a = z'/* and
b=2gives x —8 = (v1/% —2)(2?/3 + 223 +4). Now 2?3+ 221344 = (213 4+1)24+3 >3
for all x, so

|z — 8| < 1 8
|2/3 4+ 22:1/3 + 4] — gt =8l

for all z. Thus, given € > 0, we may choose 6 = 3e. Then whenever 0 < |z — 8| < § we
have [#/3 — 2| < Lz — 8| < §-3e=e.

2"/ 2] =

2
2. Let f(x) :{ 21;2 56686

(a) Prove that hH(l) f(z) =0.
z—
Solution. Since z? < f(x) < 22?2 for all x and lim,_,o x*> = lim,_,o 22? = 0, the Squeeze

Theorem implies that lim, o f(x) = 0.

(b) Use appropriately chosen sequences to prove that lirri f(z) does not exist.
z—

Solution. Let x, = 1 +% and y, = 1+ \/Ti Then x, # 1 and gy, # 1 for all n
and limz, = limy, = 1. Since z,, € Q, lim f(z,) = limz? = 1, and since y, € Q°,
lim f(y,) = 2y = 2. Hence lim,_,; f(z) does not exist.

3. True/False. Prove your assertions.

(a) If f is bounded and continuous on (0, 1), then f attains a maximum value on (0, 1).
Solution. False. A counter-exampleis f(z) = % f is continuous on (0, 1) but lim, o+ f(z) =

+00 so f does not attain a maximum value on (0, 1).

(b) If 91011)% f(z) = 0.3, then there exists some ¢ > 0 such that f(z) > 0.28 whenever 0 <
|lx — 5] < 6.
Solution. True. Let € = 0.02. Then there exists some § > 0 such that | f(z)—0.3] < 0.02

whenever 0 < |z—5| < §. The inequality | f(x)—0.3] < 0.02 implies —0.02 < f(z)—0.3 <
0.02, so 0.28 < f(z) < 0.32. Hence f(z) > 0.28 whenever 0 < |z — 5| < 9.
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(c) If f(0) =2 and f(3) = 5, then there exists some ¢ € (0, 3) such that f(c) =
Solution. False. We were not told that f is continuous, so IVT does not necessarily

apply. A counter-example is the function f defined piecewise by f(z) =2 if z < 1 and
flz)=5ifz > 1.

(d) The function f(x) = ;fgi—:;g?) attains a maximum value on [—50, 50].

Solution. True. Since 2+ cos(3z) > 1 for all , the function f is continuous on [—50, 50]
so by the Extreme Value Theorem, it attains a maximum value on [—50, 50].

(e) If lim f(2+ 1/n) = —3, then lim, 5 f(x) = —3.
Solution. False. Let f be defined piecewise by f(z) = —3 if x > 2 and f(x) = 4 if
x < 2. Then lim f(2 + 711) = lim —3 = —3 but lim f(2 — ) = lim4 = 4 so lim, s f(2)
does not exist.

(f) If lim, o f(x) = —3, then lim f(2+ 1/n) = —3.

Solution. True. Since lim, 5 f(x) = =3, if x,, is any sequence such that z, # 2 and
limz, = 2 then lim f(z,) = —3. Clearly z, =2 + % satisfies z,, # 2 and limx,, = 2, so
lim f(z,) = —3.

(g) If f is continuous at 2 and f(2+ 1/n) = arctan(n) for all n € N, then f(2) = 7 /2.
Solution. True. By definition of continuity, lim, s f(z) = f(2). Thus, since z,, = 2+
satisfies limz,, = 2 we have lim f(z,,) = f(2). But lim f(z,) = lim f(2 + 1/n)
lim arctan(n) = 7/2, so f(2) = 7/2.
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4. Suppose a function g is continuous at ¢ and g(¢) = m > 0. Show that there exists some § > 0
such that g(z) < §m for all z € (c — d,c + 4).

Solution. Let € = %m > (. Then since g is continuous at ¢, there exists § > 0 such that
lg(x) — g(c)| < §m whenever |z —¢| < 6. But [g(z) — g(c)] < gm implies g(x) — g(c) < gm,
so g(x) < g(z) + gm = $m.

5. Let f be defined on the interval [0, 4] by f(z) = 5 fjos(m Prove that there exists some ¢ € (0, 4)
such that f(c) > f(z) for all z € [0, 4].

Solution. Since 2 + cos(xz) > 1 for all x, and both 2 + cos(x) and z(4 — z) are continuous
functions, f is continuous on [0,4]. Hence by the Extreme Value Theorem, f attains a
maximum value on [0,4]. That is, there is some ¢ € [0,4] such that f(c¢) > f(z) for all
x € [0,4]. Since f(0) = f(4) =0 and f(7) =7(4 —m) > 0, f does not attain its maximum at
either 0 or 4, so ¢ € (0,4).

6. Determine which of the following functions are uniformly continuous on the given domain.
Prove your assertions.

(a) f(z)=sin(1/x) on (0,2).

Solution. f is not uniformly continuous on (O 2). Let e = 1, and let § > 0 be given.

For each n, define x,, = m and vy, = . Then
7T/2
n — Yn| = <0
[0 = bl (7/2 4 2nm)(2nm)

provided n is large enough, but

[f(zn) = flyn) =1 =0 =1 =

for all n.



(b) f(z) =sin(1/z) on [1,5].
Solution. f is continuous on the closed and bounded interval [1,5], so f is uniformly
continuous on [1, 5].

(¢) g(z) =sin(z) on R
Solution. g is uniformly continuous on R. To see this, fist write

|sin(y) — sin(x)| = |sin(x + y — z) — sin(z)|

< [cos(y — ) = 1] + | sin(y — )|
Now let € > 0 be given. Since lim;,osin(t) = 0, there exists some 6; > 0 such that
|sin(t)| < €/2 whenever |t| < ;. Since lim; o cos(t) = 1, there exists some dy > 0 such
that | cos(t) — 1| < €/2 whenever |t| < d5. Let 6 = min{dy,d2}. Then whenever |y —z| < §
it follows that |cos(y —x) — 1| + |sin(y — z)| < €/2+€/2 =e.

(d) h(x) = v/z on [0,00)
Solution. A is uniformly continuous on [0, c0). The proof is a little tricky since we need
to consider a couple of cases. Given e > 0, first suppose either x or y is in [1,00). Then

VI TV >1,s0

ly — 7|
VIV = T <yl
and thus |f(y) — f(z)| < € whenever |y — x| < e. In other words d; = € works for all such
x and y. On the other hand, if both = and y are in [0, 1], then since f is continuous on
[0, 1], it must be uniformly continuous on [0, 1] and thus there exists some d > 0 such
that |f(y) — f(x)| < € whenever |y — x| < §;. Therefore, choosing 6 = min{dy, d} implies
that |f(y) — f(z)| < € whenever |y — z| < 0.

7. Let 2
B ar* +bxr <1

T

Find a and b so that f is differentiable on R.

Solution. We just need to ensure that f is differentiable at x = 1. In order for f to be
continuous at = 1 we need lim,_,; f(x) = f(1). Since f(1) =1 and

lim f(x)=a+0b

r—1—

we need a +b = 1. By the result of Exercise 4.1.11 it then follows that f will be differentiable
if ¢’(1) = W'(1) where g(z) = az® + bz and h(x) = L. This gives 2a + b = —1. Solving this
system of equations gives a = —2 and b = 3.

8. Show that the equation 22 = 3 + sinx has ezactly two solutions. (You do not need to find
them.)
Solution. See Homework 7 Part B Solutions, #7.

9. Suppose f is continuous on [a,b] and differentiable on (a,b) and that a < f(z) < b for all
x € [a,b].



10.

11.

(a) Prove that the equation f(x) = x has at least one solution on [a, b].
Solution. Let g(z) = f(x) — z. Then g is continuous on [a,b] and g(a) = f(a) —a >0
and ¢g(b) = f(b) —b < 0. Thus 0 is between g(a) and g(b), so by the Intermediate Value
Theorem there exists some ¢ € [a, b] such that g(c) = 0, which implies f(c) = c.

(b) Suppose in addition that f’(x) # 1 for all € (a,b). Prove that the equation f(x) = x
has exactly one solution on [a, b].
Solution. Suppose there exists two solutions ¢; # ¢. Then f(c1) = ¢; and f(co) = co.
Without loss of generality, suppose ¢; < ¢3. Then by the Mean Value Theorem, there
exists some ¢ € (cq, ¢2) such that

Fle) = flea) = fler) _a—a _1

Cy — C1 Cy — C1

a contradiction.

Suppose ¢ is differentiable everywhere, ¢'(z) < 2z + 3 for all z > 1 and ¢g(1) = 7. Prove
g(z) < 2?43z + 3 for all x > 1.

Solution. Let h(z) = g(z)—z*—3x—3. Then h is differentiable everywhere. Given any z > 1,
the Mean Value Theorem applied to h on the interval [1, z| implies there exists ¢ € (1, x) such
that h(z) — k(1) = h'(c)(x — 1). Since h'(x) = ¢'(x) — 22 — 3 < 0 by the assumption about ¢’,
we have h/(¢) < 0. Thus h(z) — k(1) <0 for all x > 0. Since h(1) = 0, this implies h(xz) <0
for all z > 0, and thus g(x) < 2? + 3z + 3 for all z > 0.

Suppose f is differentiable everywhere, and there exists M > 0 such that |f'(z)| < M for all
x. Prove f is uniformly continuous on R.

Solution. Given € > 0, choose § = ¢/M. For any =,y € R, the Mean Value Theorem implies
there exists ¢ between z and y such that f(y) — f(x) = f'(¢)(y — x). Thus, since |f'(¢)| < M,
we have

f) = @) =1f')lly—z| <My —z| < Ms=¢
for all x,y such that |y — x| < 4.



