
College of the Holy Cross, Fall Semester, 2016
Math 242, Midterm 3 Practice Questions

Solutions

1. (a) Write the definition of lim
x→c

f(x) = L.

Solution. Let f be defined in some deleted neighborhood of c. Then lim
x→c

f(x) = L if

for every ϵ > 0 there exists some δ > 0 such that |f(x) − L| < ϵ for every x such that
0 < |x− c| < δ.

(b) Use the definition to prove that lim
x→3

x2 + 2x = 15.

Solution. First write |x2 +2x− 15| = |x− 3||x+5|. Next let δ1 = 1. If 0 < |x− 3| < 1,
then we have 2 < x < 4, so 7 < x + 5 < 9 and thus |x + 5| < 9. Hence we have
|x − 3||x + 5| ≤ 9|x − 3| < ϵ when |x − 3| < ϵ

9
. So let δ2 = ϵ

9
and define δmin{δ1, δ2}.

Then, when 0 < |x− 3| < δ we have |x− 3| < 1 and |x− 3| < ϵ
9
, so |x+ 5| < 9 and thus

|x2 + 2x− 15| = |x+ 5||x− 3| ≤ 9|x− 3| < 9
ϵ

9
= ϵ.

(c) Use the definition to prove that lim
x→8

x1/3 = 2.

Solution. First, using the equation a3 − b3 = (a − b)(a2 + ab + b2) with a = x1/3 and
b = 2 gives x−8 = (x1/3−2)(x2/3+2x1/3+4). Now x2/3+2x1/3+4 = (x1/3+1)2+3 ≥ 3
for all x, so

|x1/3 − 2| = |x− 8|
|x2/3 + 2x1/3 + 4|

≤ 1

3
|x− 8|

for all x. Thus, given ϵ > 0, we may choose δ = 3ϵ. Then whenever 0 < |x − 8| < δ we
have |x1/3 − 2| ≤ 1

3
|x− 8| < 1

3
· 3ϵ = ϵ.

2. Let f(x) =

{
x2 x ∈ Q
2x2 x ∈ Qc

(a) Prove that lim
x→0

f(x) = 0.

Solution. Since x2 ≤ f(x) ≤ 2x2 for all x and limx→0 x
2 = limx→0 2x

2 = 0, the Squeeze
Theorem implies that limx→0 f(x) = 0.

(b) Use appropriately chosen sequences to prove that lim
x→1

f(x) does not exist.

Solution. Let xn = 1 + 1
n
and yn = 1 +

√
2
n
. Then xn ̸= 1 and yn ̸= 1 for all n

and lim xn = lim yn = 1. Since xn ∈ Q, lim f(xn) = lim x2
n = 1, and since yn ∈ Qc,

lim f(yn) = 2y2n = 2. Hence limx→1 f(x) does not exist.

3. True/False. Prove your assertions.

(a) If f is bounded and continuous on (0, 1), then f attains a maximum value on (0, 1).

Solution. False. A counter-example is f(x) = 1
x
. f is continuous on (0, 1) but limx→0+ f(x) =

+∞ so f does not attain a maximum value on (0, 1).

(b) If lim
x→5

f(x) = 0.3, then there exists some δ > 0 such that f(x) > 0.28 whenever 0 <

|x− 5| < δ.

Solution. True. Let ϵ = 0.02. Then there exists some δ > 0 such that |f(x)−0.3| < 0.02
whenever 0 < |x−5| < δ. The inequality |f(x)−0.3| < 0.02 implies −0.02 < f(x)−0.3 <
0.02, so 0.28 < f(x) < 0.32. Hence f(x) > 0.28 whenever 0 < |x− 5| < δ.
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(c) If f(0) = 2 and f(3) = 5, then there exists some c ∈ (0, 3) such that f(c) = 3.

Solution. False. We were not told that f is continuous, so IVT does not necessarily
apply. A counter-example is the function f defined piecewise by f(x) = 2 if x ≤ 1 and
f(x) = 5 if x > 1.

(d) The function f(x) = sin(x2+1)
2+cos(3x)

attains a maximum value on [−50, 50].

Solution. True. Since 2+cos(3x) ≥ 1 for all x, the function f is continuous on [−50, 50]
so by the Extreme Value Theorem, it attains a maximum value on [−50, 50].

(e) If lim f(2 + 1/n) = −3, then limx→2 f(x) = −3.

Solution. False. Let f be defined piecewise by f(x) = −3 if x > 2 and f(x) = 4 if
x ≤ 2. Then lim f(2 + 1

n
) = lim−3 = −3 but lim f(2 − 1

n
) = lim 4 = 4 so limx→2 f(x)

does not exist.

(f) If limx→2 f(x) = −3, then lim f(2 + 1/n) = −3.

Solution. True. Since limx→2 f(x) = −3, if xn is any sequence such that xn ̸= 2 and
limxn = 2 then lim f(xn) = −3. Clearly xn = 2 + 1

n
satisfies xn ̸= 2 and limxn = 2, so

lim f(xn) = −3.

(g) If f is continuous at 2 and f(2 + 1/n) = arctan(n) for all n ∈ N, then f(2) = π/2.

Solution. True. By definition of continuity, limx→2 f(x) = f(2). Thus, since xn = 2+ 1
n

satisfies limxn = 2 we have lim f(xn) = f(2). But lim f(xn) = lim f(2 + 1/n) =
lim arctan(n) = π/2, so f(2) = π/2.

4. Suppose a function g is continuous at c and g(c) = m > 0. Show that there exists some δ > 0
such that g(x) < 9

8
m for all x ∈ (c− δ, c+ δ).

Solution. Let ϵ = 1
8
m > 0. Then since g is continuous at c, there exists δ > 0 such that

|g(x) − g(c)| < 1
8
m whenever |x − c| < δ. But |g(x) − g(c)| < 1

8
m implies g(x) − g(c) < 1

8
m,

so g(x) < g(x) + 1
8
m = 9

8
m.

5. Let f be defined on the interval [0, 4] by f(x) = x(4−x)
2+cos(x)

. Prove that there exists some c ∈ (0, 4)

such that f(c) ≥ f(x) for all x ∈ [0, 4].

Solution. Since 2 + cos(x) ≥ 1 for all x, and both 2 + cos(x) and x(4 − x) are continuous
functions, f is continuous on [0, 4]. Hence by the Extreme Value Theorem, f attains a
maximum value on [0, 4]. That is, there is some c ∈ [0, 4] such that f(c) ≥ f(x) for all
x ∈ [0, 4]. Since f(0) = f(4) = 0 and f(π) = π(4− π) > 0, f does not attain its maximum at
either 0 or 4, so c ∈ (0, 4).

6. Determine which of the following functions are uniformly continuous on the given domain.
Prove your assertions.

(a) f(x) = sin(1/x) on (0, 2).

Solution. f is not uniformly continuous on (0, 2). Let ϵ = 1, and let δ > 0 be given.
For each n, define xn = 1

π/2+2nπ
and yn = 1

2nπ
. Then

|xn − yn| =
π/2

(π/2 + 2nπ)(2nπ)
< δ

provided n is large enough, but

|f(xn)− f(yn)| = |1− 0| = 1 ≥ ϵ

for all n.
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(b) f(x) = sin(1/x) on [1, 5].

Solution. f is continuous on the closed and bounded interval [1, 5], so f is uniformly
continuous on [1, 5].

(c) g(x) = sin(x) on R
Solution. g is uniformly continuous on R. To see this, fist write

| sin(y)− sin(x)| = | sin(x+ y − x)− sin(x)|
= | sin(x) cos(y − x) + sin(y − x) cos(x)− sin(x)|
= | sin(x)[cos(y − x)− 1] + cos(x) sin(y − x)|
≤ | cos(y − x)− 1|+ | sin(y − x)|

Now let ϵ > 0 be given. Since limt→0 sin(t) = 0, there exists some δ1 > 0 such that
| sin(t)| < ϵ/2 whenever |t| < δ1. Since limt→0 cos(t) = 1, there exists some δ2 > 0 such
that | cos(t)−1| < ϵ/2 whenever |t| < δ2. Let δ = min{δ1, δ2}. Then whenever |y−x| < δ
it follows that | cos(y − x)− 1|+ | sin(y − x)| < ϵ/2 + ϵ/2 = ϵ.

(d) h(x) =
√
x on [0,∞)

Solution. h is uniformly continuous on [0,∞). The proof is a little tricky since we need
to consider a couple of cases. Given ϵ > 0, first suppose either x or y is in [1,∞). Then√
y +

√
x ≥ 1, so

|√y −
√
x| = |y − x|

√
y +

√
x
≤ |y − x|

and thus |f(y)− f(x)| < ϵ whenever |y−x| < ϵ. In other words δ1 = ϵ works for all such
x and y. On the other hand, if both x and y are in [0, 1], then since f is continuous on
[0, 1], it must be uniformly continuous on [0, 1] and thus there exists some δ2 > 0 such
that |f(y)−f(x)| < ϵ whenever |y−x| < δ2. Therefore, choosing δ = min{δ1, δ2} implies
that |f(y)− f(x)| < ϵ whenever |y − x| < δ.

7. Let

f(x) =

{
ax2 + bx x < 1

1
x

x ≥ 1

Find a and b so that f is differentiable on R.
Solution. We just need to ensure that f is differentiable at x = 1. In order for f to be
continuous at x = 1 we need limx→1 f(x) = f(1). Since f(1) = 1 and

lim
x→1−

f(x) = a+ b

we need a+ b = 1. By the result of Exercise 4.1.11 it then follows that f will be differentiable
if g′(1) = h′(1) where g(x) = ax2 + bx and h(x) = 1

x
. This gives 2a + b = −1. Solving this

system of equations gives a = −2 and b = 3.

8. Show that the equation x2 = 3 + sin x has exactly two solutions. (You do not need to find
them.)

Solution. See Homework 7 Part B Solutions, #7.

9. Suppose f is continuous on [a, b] and differentiable on (a, b) and that a ≤ f(x) ≤ b for all
x ∈ [a, b].
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(a) Prove that the equation f(x) = x has at least one solution on [a, b].

Solution. Let g(x) = f(x)− x. Then g is continuous on [a, b] and g(a) = f(a)− a ≥ 0
and g(b) = f(b)− b ≤ 0. Thus 0 is between g(a) and g(b), so by the Intermediate Value
Theorem there exists some c ∈ [a, b] such that g(c) = 0, which implies f(c) = c.

(b) Suppose in addition that f ′(x) ̸= 1 for all x ∈ (a, b). Prove that the equation f(x) = x
has exactly one solution on [a, b].

Solution. Suppose there exists two solutions c1 ̸= c2. Then f(c1) = c1 and f(c2) = c2.
Without loss of generality, suppose c1 < c2. Then by the Mean Value Theorem, there
exists some c ∈ (c1, c2) such that

f ′(c) =
f(c2)− f(c1)

c2 − c1
=

c2 − c1
c2 − c1

= 1,

a contradiction.

10. Suppose g is differentiable everywhere, g′(x) ≤ 2x + 3 for all x > 1 and g(1) = 7. Prove
g(x) ≤ x2 + 3x+ 3 for all x ≥ 1.

Solution. Let h(x) = g(x)−x2−3x−3. Then h is differentiable everywhere. Given any x > 1,
the Mean Value Theorem applied to h on the interval [1, x] implies there exists c ∈ (1, x) such
that h(x)− h(1) = h′(c)(x− 1). Since h′(x) = g′(x)− 2x− 3 ≤ 0 by the assumption about g′,
we have h′(c) ≤ 0. Thus h(x)− h(1) ≤ 0 for all x ≥ 0. Since h(1) = 0, this implies h(x) ≤ 0
for all x ≥ 0, and thus g(x) ≤ x2 + 3x+ 3 for all x ≥ 0.

11. Suppose f is differentiable everywhere, and there exists M > 0 such that |f ′(x)| ≤ M for all
x. Prove f is uniformly continuous on R.
Solution. Given ϵ > 0, choose δ = ϵ/M . For any x, y ∈ R, the Mean Value Theorem implies
there exists c between x and y such that f(y)− f(x) = f ′(c)(y− x). Thus, since |f ′(c)| ≤ M ,
we have

|f(y)− f(x)| = |f ′(c)||y − x| ≤ M |y − x| < Mδ = ϵ

for all x, y such that |y − x| < δ.
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