College of the Holy Cross, Fall Semester, 2016 Math 242, Midterm 3 Practice Questions

- 1. (a) Write the definition of $\lim_{x\to c} f(x) = L$.
 - (b) Use the definition to prove that $\lim_{x\to 3} x^2 + 2x = 15$.
 - (c) Use the definition to prove that $\lim_{x\to 8} x^{1/3} = 2$.
- 2. Let $f(x) = \begin{cases} x^2 & x \in \mathbb{Q} \\ 2x^2 & x \in \mathbb{Q}^c \end{cases}$
 - (a) Prove that $\lim_{x\to 0} f(x) = 0$.
 - (b) Use appropriately chosen sequences to prove that $\lim_{x\to 1} f(x)$ does not exist.
- 3. True/False. Prove your assertions.
 - (a) If f is bounded and continuous on (0,1), then f attains a maximum value on (0,1).
 - (b) If $\lim_{x\to 5} f(x) = 0.3$, then there exists some $\delta > 0$ such that f(x) > 0.28 whenever $0 < |x-5| < \delta$.
 - (c) If f(0) = 2 and f(3) = 5, then there exists some $c \in (0,3)$ such that f(c) = 3.
 - (d) The function $f(x) = \frac{\sin(x^2+1)}{2+\cos(3x)}$ attains a maximum value on [-50, 50].
 - (e) If $\lim_{x\to 2} f(x) = -3$, then $\lim_{x\to 2} f(x) = -3$.
 - (f) If $\lim_{x\to 2} f(x) = -3$, then $\lim_{x\to 2} f(x) = -3$.
 - (g) If f is continuous at 2 and $f(2+1/n) = \arctan(n)$ for all $n \in \mathbb{N}$, then $f(2) = \pi/2$.
- 4. Suppose a function g is continuous at c and g(c) = m > 0. Show that there exists some $\delta > 0$ such that $g(x) < \frac{9}{8}m$ for all $x \in (c \delta, c + \delta)$.
- 5. Let f be defined on the interval [0,4] by $f(x) = \frac{x(4-x)}{2+\cos(x)}$. Prove that there exists some $c \in (0,4)$ such that $f(c) \geq f(x)$ for all $x \in [0,4]$.
- 6. Determine which of the following functions are uniformly continuous on the given domain. Prove your assertions.
 - (a) $f(x) = \sin(1/x)$ on (0, 2).
 - (b) $f(x) = \sin(1/x)$ on [1, 5].
 - (c) $g(x) = \sin(x)$ on \mathbb{R}
 - (d) $h(x) = \sqrt{x}$ on $[0, \infty)$

7. Let

$$f(x) = \begin{cases} ax^2 + bx & x < 1\\ \frac{1}{x} & x \ge 1 \end{cases}$$

Find a and b so that f is differentiable on \mathbb{R} .

- 8. Show that the equation $x^2 = 3 + \sin x$ has exactly two solutions. (You do not need to find them.)
- 9. Suppose f is continuous on [a, b] and differentiable on (a, b) and that $a \leq f(x) \leq b$ for all $x \in [a, b]$.
 - (a) Prove that the equation f(x) = x has at least one solution on [a, b].
 - (b) Suppose in addition that $f'(x) \neq 1$ for all $x \in (a, b)$. Prove that the equation f(x) = x has exactly one solution on [a, b].
- 10. Suppose g is differentiable everywhere, $g'(x) \le 2x + 3$ for all x > 1 and g(1) = 7. Prove $g(x) \le x^2 + 3x + 3$ for all $x \ge 1$.
- 11. Suppose f is differentiable everywhere, and there exists M > 0 such that $|f'(x)| \leq M$ for all x. Prove f is uniformly continuous on \mathbb{R} .