
College of the Holy Cross, Fall Semester, 2016
Math 242, Midterm 2 Practice Questions

Solutions

1. Give an example of each of the following, or explain why such an example is not possible.

(a) An unbounded Cauchy sequence.

Solution. Impossible. Cauchy sequences converge, and convergent sequences are bounded.

(b) A bounded sequence that has no convergent subsequences.

Solution. Impossible. The Bolzano-Weierstrass Theorem states that any bounded se-
quence has a convergent subsequence.

(c) A convergent sequence that has a subsequence that converges to 5 and a subsequence
that converges to 7.

Solution. Impossible. Every subsequence of a convergent sequence converges to the
limit of the sequence.

(d) Series
∑∞

n=1 an and
∑∞

n=1 bn that both diverge, such that the series
∑∞

n=1 an + bn con-
verges.

Solution. Let an = 1 and bn = −1. Then
∑∞

n=1 1 and
∑∞

n=1(−1) both diverge, but∑∞
n=1(1 +−1) =

∑∞
n=1 0 converges.

(e) A series
∑∞

n=1 an that converges and a series
∑∞

n=1 bn that diverges, such that the series∑∞
n=1 an + bn converges.

Solution. This is not possible. For if
∑∞

n=1 an and
∑∞

n=1 an + bn both converge, since
bn = (an + bn)− an it follows that

∑∞
n=1 bn also converges.

(f) An unbounded sequence xn with xn ≥ 0 for all n such that lim xn ̸= +∞.

Solution. Let xn = 0, 1, 0, 2, 0, 3, 0, 4, . . .. Then xn is unbounded and xn ≥ 0 for all n,
but xn does not diverge to +∞.

2. Use the definition of an infinite limit to prove that lim
√
1 +

√
n = +∞.

Solution. Given M > 0 we want
√

1 +
√
n > M , which is equivalent to 1 +

√
n > M2,

which is in turn equivalent to n > (M2−1)2. By the Archimedian Property, there exists some
n0 ∈ N such that n0 > (M2 − 1)2. Then for any n ≥ n0 we have n > (M2 − 1)2 and thus√

1 +
√
n > M .

3. Suppose limxn = +∞ and lim xn

yn
= 3. Prove that lim yn = +∞.

Solution. Since xn

yn
→ 3, if we choose ϵ = 1, then there is some n0 ∈ N such that

∣∣∣xn

yn
− 3

∣∣∣ < 1

whenever n ≥ n0. But
∣∣∣xn

yn
− 3

∣∣∣ < 1 implies 2 < xn

yn
< 4, and thus yn > 1

4
xn. Now since

xn → +∞, for any M > 0 there is some n1 ∈ N such that xn > 4M whenever n ≥ n1. Let
n2 = max{n0, n1}. Then whenever n ≥ n2 we have yn > 1

4
xn and xn > 4M so yn > 1

4
(4M) =

M . Hence yn → +∞.

4. Find the sum of each series. Explain your reasoning.

(a)
∞∑
n=0

9n−1 + 10n+1

11n
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Solution. Rewrite this as the sum of two geometric series:

∞∑
n=0

9n−1

11n
+

∞∑
n=0

10n+1

11n
=

∞∑
n=0

1

9
(9/11)n+

∞∑
n=0

10(10/11)n =
1/9

1− 9/11
+

10

1− 10/11
=

11

18
+110

(b)
∞∑
n=1

cos(π/n)− cos(π/(n+ 2))

Solution. This series is telescoping. To see this, write the nth partial sum:

sn = cos(π)− cos(π/3) + cos(π/2)− cos(π/4)

+ cos(π/3)− cos(π/5) + cos(π/4)− cos(π/6) + · · ·
+ cos(π/(n− 1))− cos(π/(n+ 1)) + cos(π/n)− cos(π/(n+ 2))

All the terms in the partial sum cancel, except the cos(π), cos(π/2), cos(π/(n+ 1)) and
cos(π/(n+ 2). Thus

sn = cos(π) + cos(π/2)− cos(π/(n+ 1))− cos(π/(n+ 1))

so the sum of the series is

s = lim sn = cos(π) + cos(π/2)− cos(0)− cos(0) = −1 + 0− 1− 1 = −3.

5. Suppose an and bn are nonnegative for all n, lim an
bn

= 3
4
and

∞∑
n=1

bn = 8. Which of the following

statements are true?

(i)
∞∑
n=1

an = 6.

(ii)
∞∑
n=1

an converges.

(iii)
∞∑
n=1

an diverges.

(iv) This doesn’t tell us anything about
∞∑
n=1

an.

Solution. (ii) By the limit comparison test, since
∞∑
n=1

bn converges and lim an
bn

> 0,
∞∑
n=1

an

converges.

6. State whether each of the following series converges or diverges. Prove your assertion.

(a)
∞∑
n=1

4 + n

1 + n3

Solution. For large n, the terms of this series are roughly 1
n2 . Since

lim
4+n
1+n3

1
n2

= lim
4
n
+ 1

1
n3 + 1

= 1 ̸= 0

and the series
∑∞

n=1
1
n2 converges, the Limit Comparison Test implies that the series

converges.
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(b)
∞∑
n=1

(−1)nn

n2 + 1

Solution. This is an alternating series, so let’s apply the Alternating Series Test. Let
an = n

n2+1
. Then we have an+1 < an provided

n+ 1

(n+ 1)2 + 1
<

n

n2 + 1
.

For n ≥ 1, this inequality holds if and only if (n+1)(n2+1) < n((n+1)2+1). Expanding
both sides of this, we have n3 + n2 + n + 1 < n3 + 2n2 + n + 1, which is equivalent to
n2 > 0. This is clearly true, so all of these inequalities are true for n ≥ 1, and thus the
sequence an is decreasing. Since

lim an = lim
n

n2 + 1
= lim

1
n

1 + 1
n2

= 0

the series converges.

(c)
∞∑
n=1

2

5n+ 3

Solution. Let’s use the limit comparison test with 1
n
.

lim
2

5n+3
1
n

= lim
2

5
n
+ 3

=
2

3
̸= 0.

Thus since
∑∞

n=1
1
n
diverges, the series diverges.

(d)
∞∑
n=1

cos
(π
n

)
Solution. lim cos

(
π
n

)
= cos(0) = 1 ̸= 0 so the series diverges by the nth term test.

(e)
∞∑
n=1

(n!)2

(2n)!

Solution. Apply the Ratio Test:∣∣∣∣an+1

an

∣∣∣∣ = ((n+ 1)!)2

(2n+ 2)!
· (2n)!
(n!)2

=
(n+ 1)2

(2n+ 1)(2n+ 2)
=

n+ 1

4n+ 2

Therefore

r = lim

∣∣∣∣an+1

an

∣∣∣∣ = 1

4
< 1

so the series converges.

(f)
∞∑
n=1

(lnn)2

n2

Solution. The terms of this series are positive and decreasing, so we may apply the

Cauchy Condensation Test. Setting an = (lnn)2

n2 , we have

bn = 2na2n =
2n(ln(2n))2

(2n)2
=

(n ln 2)2

2n
=

(ln 2)2n2

2n
.
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Since

lim

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
(n+ 1)2

2n2
=

1

2
< 1,

the Ratio Test implies that the series
∑∞

n=0 bn converges, and thus the series
∑∞

n=1 an
converges.

7. Suppose an > 0 for all n and
∞∑
n=1

an converges. Prove that
∞∑
n=1

a2n converges.

Solution. Since
∞∑
n=1

an converges, the nth term test implies that lim an = 0. Thus there exists

n0 ∈ N such that an < 1 for all n ≥ n0. Since an > 0 as well, this implies a2n < an for all

n ≥ n0. Hence the comparison test implies
∞∑
n=1

a2n converges.

8. Find the interval of convergence of each power series.

(a)
∞∑
n=1

(x+ 2)n√
n

Solution. Using the ratio test,

lim

∣∣∣∣an+1

an

∣∣∣∣ = lim

√
n|x+ 2|√
n+ 1

= |x+ 2|

and thus the series converges if |x+ 2| < 1 and diverges if |x+ 2| > 1. Next, |x+ 2| = 1
if x = −1 or x = −3. When x = −1 the series is

∑∞
n=1

1√
n
and when x = −3 it

is
∑∞

n=1
(−1)n√

n
. The first series diverges since it is a p-series with p = 1

2
< 1 and the

second series converges by the alternating series test. thus the interval of convergence is
[−3,−1).

(b)
∞∑
n=1

xn

2n + 3n

Solution. Using the ratio test again, and the fact that lim(2/3)n = 0 we have

lim

∣∣∣∣an+1

an

∣∣∣∣ = lim
|x|(2n + 3n)

2n+1 + 3n+1
= lim

|x|((2/3)n + 1)

2 · (2/3)n + 3
=

|x|
3
,

and thus the series converges if |x| < 3 and diverges if |x| > 3. When x = 3, the series

becomes
∑∞

n=1
3n

2n+3n
and when x = −3 is becomes

∑∞
n=1

(−1)n·3n
2n+3n

. Since

lim
3n

2n + 3n
= lim

1

(2/3)n + 1
= 1 ̸= 0,

both of these series diverge by the nth term test. Thus the interval of convergence is
(−3, 3).

(c)
∞∑
n=1

(n!)2xn

(2n)!

Solution. Applying the ratio test once more gives

lim

∣∣∣∣an+1

an

∣∣∣∣ = lim
|x|(n+ 1)2

(2n+ 1)(2n+ 2)
=

1

4
|x|,
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so the series converges when |x| < 4 and diverges when |x| > 4. When x = 4 the series

becomes
∑∞

n=1
(n!)24n

(2n)!
. By the above calculation,

an+1

an
=

4(n+ 1)2

(2n+ 1)(2n+ 2)
=

2n+ 2)

2n+ 1
> 1

for all n. Hence an+1 > an for all n, so the sequence an is strictly increasing. Since a1 = 2
this implies an > 2 for all n, so lim an ̸= 0 and thus the series diverges by the nth term
test. The same holds when x = −4, so the interval of convergence is (−4, 4).

9. Suppose that lim
n→∞

an =
3

5
. Prove that the interval of convergence of the power series

∞∑
n=0

anx
n

is (−1, 1).

Solution. Let bn = anx
n. Then

lim

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
an+1|x|

an
= lim

3
5
|x|
3
5

= |x|,

so the ratio test implies that the series converges if |x| < 1 and diverges if |x| > 1. If x = 1,

the series becomes
∞∑
n=0

an, which diverges by the nth term test since lim an = 3
5
̸= 0. Likewise,

when x = −1 the series becomes
∞∑
n=0

an(−1)n, which also diverges since lim an(−1)n does not

exist. Thus the series converges if and only if x ∈ (−1, 1).

5


