College of the Holy Cross, Fall Semester, 2016 Math 242, Midterm 2 Practice Questions Solutions

- 1. Give an example of each of the following, or explain why such an example is not possible.
 - (a) An unbounded Cauchy sequence.

Solution. Impossible. Cauchy sequences converge, and convergent sequences are bounded.

(b) A bounded sequence that has no convergent subsequences.

Solution. Impossible. The Bolzano-Weierstrass Theorem states that any bounded sequence has a convergent subsequence.

(c) A convergent sequence that has a subsequence that converges to 5 and a subsequence that converges to 7.

Solution. Impossible. Every subsequence of a convergent sequence converges to the limit of the sequence.

(d) Series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ that both diverge, such that the series $\sum_{n=1}^{\infty} a_n + b_n$ converges.

Solution. Let $a_n = 1$ and $b_n = -1$. Then $\sum_{n=1}^{\infty} 1$ and $\sum_{n=1}^{\infty} (-1)$ both diverge, but $\sum_{n=1}^{\infty} (1+-1) = \sum_{n=1}^{\infty} 0$ converges.

(e) A series $\sum_{n=1}^{\infty} a_n$ that converges and a series $\sum_{n=1}^{\infty} b_n$ that diverges, such that the series $\sum_{n=1}^{\infty} a_n + b_n$ converges.

Solution. This is not possible. For if $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} a_n + b_n$ both converge, since $b_n = (a_n + b_n) - a_n$ it follows that $\sum_{n=1}^{\infty} b_n$ also converges.

(f) An unbounded sequence x_n with $x_n \geq 0$ for all n such that $\lim x_n \neq +\infty$.

Solution. Let $x_n = 0, 1, 0, 2, 0, 3, 0, 4, \ldots$ Then x_n is unbounded and $x_n \ge 0$ for all n, but x_n does not diverge to $+\infty$.

2. Use the definition of an infinite limit to prove that $\lim \sqrt{1+\sqrt{n}} = +\infty$.

Solution. Given M > 0 we want $\sqrt{1 + \sqrt{n}} > M$, which is equivalent to $1 + \sqrt{n} > M^2$, which is in turn equivalent to $n > (M^2 - 1)^2$. By the Archimedian Property, there exists some $n_0 \in \mathbb{N}$ such that $n_0 > (M^2 - 1)^2$. Then for any $n \ge n_0$ we have $n > (M^2 - 1)^2$ and thus $\sqrt{1 + \sqrt{n}} > M$.

3. Suppose $\lim x_n = +\infty$ and $\lim \frac{x_n}{y_n} = 3$. Prove that $\lim y_n = +\infty$.

Solution. Since $\frac{x_n}{y_n} \to 3$, if we choose $\epsilon = 1$, then there is some $n_0 \in \mathbb{N}$ such that $\left| \frac{x_n}{y_n} - 3 \right| < 1$ whenever $n \geq n_0$. But $\left| \frac{x_n}{y_n} - 3 \right| < 1$ implies $2 < \frac{x_n}{y_n} < 4$, and thus $y_n > \frac{1}{4}x_n$. Now since $x_n \to +\infty$, for any M > 0 there is some $n_1 \in \mathbb{N}$ such that $x_n > 4M$ whenever $n \geq n_1$. Let $n_2 = \max\{n_0, n_1\}$. Then whenever $n \geq n_2$ we have $y_n > \frac{1}{4}x_n$ and $x_n > 4M$ so $y_n > \frac{1}{4}(4M) = M$. Hence $y_n \to +\infty$.

1

4. Find the sum of each series. Explain your reasoning.

(a)
$$\sum_{n=0}^{\infty} \frac{9^{n-1} + 10^{n+1}}{11^n}$$

Solution. Rewrite this as the sum of two geometric series:

$$\sum_{n=0}^{\infty} \frac{9^{n-1}}{11^n} + \sum_{n=0}^{\infty} \frac{10^{n+1}}{11^n} = \sum_{n=0}^{\infty} \frac{1}{9} (9/11)^n + \sum_{n=0}^{\infty} 10(10/11)^n = \frac{1/9}{1 - 9/11} + \frac{10}{1 - 10/11} = \frac{11}{18} + 110$$

(b)
$$\sum_{n=1}^{\infty} \cos(\pi/n) - \cos(\pi/(n+2))$$

Solution. This series is telescoping. To see this, write the n^{th} partial sum:

$$s_n = \cos(\pi) - \cos(\pi/3) + \cos(\pi/2) - \cos(\pi/4) + \cos(\pi/3) - \cos(\pi/5) + \cos(\pi/4) - \cos(\pi/6) + \cdots + \cos(\pi/(n-1)) - \cos(\pi/(n+1)) + \cos(\pi/n) - \cos(\pi/(n+2))$$

All the terms in the partial sum cancel, except the $\cos(\pi)$, $\cos(\pi/2)$, $\cos(\pi/(n+1))$ and $\cos(\pi/(n+2))$. Thus

$$s_n = \cos(\pi) + \cos(\pi/2) - \cos(\pi/(n+1)) - \cos(\pi/(n+1))$$

so the sum of the series is

$$s = \lim s_n = \cos(\pi) + \cos(\pi/2) - \cos(0) - \cos(0) = -1 + 0 - 1 - 1 = -3.$$

- 5. Suppose a_n and b_n are nonnegative for all n, $\lim \frac{a_n}{b_n} = \frac{3}{4}$ and $\sum_{n=1}^{\infty} b_n = 8$. Which of the following statements are true?
 - (i) $\sum_{n=1}^{\infty} a_n = 6$.
 - (ii) $\sum_{n=1}^{\infty} a_n$ converges.
 - (iii) $\sum_{n=1}^{\infty} a_n$ diverges.
 - (iv) This doesn't tell us anything about $\sum_{n=1}^{\infty} a_n$.

Solution. (ii) By the limit comparison test, since $\sum_{n=1}^{\infty} b_n$ converges and $\lim \frac{a_n}{b_n} > 0$, $\sum_{n=1}^{\infty} a_n$ converges.

- 6. State whether each of the following series converges or diverges. Prove your assertion.
 - (a) $\sum_{n=1}^{\infty} \frac{4+n}{1+n^3}$

Solution. For large n, the terms of this series are roughly $\frac{1}{n^2}$. Since

$$\lim \frac{\frac{4+n}{1+n^3}}{\frac{1}{n^2}} = \lim \frac{\frac{4}{n}+1}{\frac{1}{n^3}+1} = 1 \neq 0$$

and the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, the Limit Comparison Test implies that the series converges.

2

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2 + 1}$$

Solution. This is an alternating series, so let's apply the Alternating Series Test. Let $a_n = \frac{n}{n^2+1}$. Then we have $a_{n+1} < a_n$ provided

$$\frac{n+1}{(n+1)^2+1} < \frac{n}{n^2+1}.$$

For $n \ge 1$, this inequality holds if and only if $(n+1)(n^2+1) < n((n+1)^2+1)$. Expanding both sides of this, we have $n^3 + n^2 + n + 1 < n^3 + 2n^2 + n + 1$, which is equivalent to $n^2 > 0$. This is clearly true, so all of these inequalities are true for $n \ge 1$, and thus the sequence a_n is decreasing. Since

$$\lim a_n = \lim \frac{n}{n^2 + 1} = \lim \frac{\frac{1}{n}}{1 + \frac{1}{n^2}} = 0$$

the series converges.

(c)
$$\sum_{n=1}^{\infty} \frac{2}{5n+3}$$

Solution. Let's use the limit comparison test with $\frac{1}{n}$.

$$\lim \frac{\frac{2}{5n+3}}{\frac{1}{n}} = \lim \frac{2}{\frac{5}{n}+3} = \frac{2}{3} \neq 0.$$

Thus since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, the series diverges.

(d)
$$\sum_{n=1}^{\infty} \cos\left(\frac{\pi}{n}\right)$$

Solution. $\lim \cos \left(\frac{\pi}{n}\right) = \cos(0) = 1 \neq 0$ so the series diverges by the n^{th} term test.

(e)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

Solution. Apply the Ratio Test:

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{((n+1)!)^2}{(2n+2)!} \cdot \frac{(2n)!}{(n!)^2} = \frac{(n+1)^2}{(2n+1)(2n+2)} = \frac{n+1}{4n+2}$$

Therefore

$$r = \lim \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{4} < 1$$

so the series converges.

(f)
$$\sum_{n=1}^{\infty} \frac{(\ln n)^2}{n^2}$$

Solution. The terms of this series are positive and decreasing, so we may apply the Cauchy Condensation Test. Setting $a_n = \frac{(\ln n)^2}{n^2}$, we have

$$b_n = 2^n a_{2^n} = \frac{2^n (\ln(2^n))^2}{(2^n)^2} = \frac{(n \ln 2)^2}{2^n} = \frac{(\ln 2)^2 n^2}{2^n}.$$

Since

$$\lim \left| \frac{b_{n+1}}{b_n} \right| = \lim \frac{(n+1)^2}{2n^2} = \frac{1}{2} < 1,$$

the Ratio Test implies that the series $\sum_{n=0}^{\infty} b_n$ converges, and thus the series $\sum_{n=1}^{\infty} a_n$ converges.

7. Suppose $a_n > 0$ for all n and $\sum_{n=1}^{\infty} a_n$ converges. Prove that $\sum_{n=1}^{\infty} a_n^2$ converges.

Solution. Since $\sum_{n=1}^{\infty} a_n$ converges, the n^{th} term test implies that $\lim a_n = 0$. Thus there exists $n_0 \in \mathbb{N}$ such that $a_n < 1$ for all $n \ge n_0$. Since $a_n > 0$ as well, this implies $a_n^2 < a_n$ for all $n \ge n_0$. Hence the comparison test implies $\sum_{n=1}^{\infty} a_n^2$ converges.

8. Find the interval of convergence of each power series.

(a)
$$\sum_{n=1}^{\infty} \frac{(x+2)^n}{\sqrt{n}}$$

Solution. Using the ratio test,

$$\lim \left| \frac{a_{n+1}}{a_n} \right| = \lim \frac{\sqrt{n}|x+2|}{\sqrt{n+1}} = |x+2|$$

and thus the series converges if |x+2| < 1 and diverges if |x+2| > 1. Next, |x+2| = 1 if x = -1 or x = -3. When x = -1 the series is $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ and when x = -3 it is $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$. The first series diverges since it is a *p*-series with $p = \frac{1}{2} < 1$ and the second series converges by the alternating series test. thus the interval of convergence is [-3, -1).

(b)
$$\sum_{n=1}^{\infty} \frac{x^n}{2^n + 3^n}$$

Solution. Using the ratio test again, and the fact that $\lim_{n \to \infty} (2/3)^n = 0$ we have

$$\lim \left| \frac{a_{n+1}}{a_n} \right| = \lim \frac{|x|(2^n + 3^n)}{2^{n+1} + 3^{n+1}} = \lim \frac{|x|((2/3)^n + 1)}{2 \cdot (2/3)^n + 3} = \frac{|x|}{3},$$

and thus the series converges if |x| < 3 and diverges if |x| > 3. When x = 3, the series becomes $\sum_{n=1}^{\infty} \frac{3^n}{2^n + 3^n}$ and when x = -3 is becomes $\sum_{n=1}^{\infty} \frac{(-1)^n \cdot 3^n}{2^n + 3^n}$. Since

$$\lim \frac{3^n}{2^n + 3^n} = \lim \frac{1}{(2/3)^n + 1} = 1 \neq 0,$$

both of these series diverge by the n^{th} term test. Thus the interval of convergence is (-3,3).

(c)
$$\sum_{n=1}^{\infty} \frac{(n!)^2 x^n}{(2n)!}$$

Solution. Applying the ratio test once more gives

$$\lim \left| \frac{a_{n+1}}{a_n} \right| = \lim \frac{|x|(n+1)^2}{(2n+1)(2n+2)} = \frac{1}{4}|x|,$$

so the series converges when |x| < 4 and diverges when |x| > 4. When x = 4 the series becomes $\sum_{n=1}^{\infty} \frac{(n!)^2 4^n}{(2n)!}$. By the above calculation,

$$\frac{a_{n+1}}{a_n} = \frac{4(n+1)^2}{(2n+1)(2n+2)} = \frac{2n+2}{2n+1} > 1$$

for all n. Hence $a_{n+1} > a_n$ for all n, so the sequence a_n is strictly increasing. Since $a_1 = 2$ this implies $a_n > 2$ for all n, so $\lim a_n \neq 0$ and thus the series diverges by the n^{th} term test. The same holds when x = -4, so the interval of convergence is (-4, 4).

9. Suppose that $\lim_{n\to\infty} a_n = \frac{3}{5}$. Prove that the interval of convergence of the power series $\sum_{n=0}^{\infty} a_n x^n$ is (-1,1).

Solution. Let $b_n = a_n x^n$. Then

$$\lim \left| \frac{b_{n+1}}{b_n} \right| = \lim \frac{a_{n+1}|x|}{a_n} = \lim \frac{\frac{3}{5}|x|}{\frac{3}{5}} = |x|,$$

so the ratio test implies that the series converges if |x| < 1 and diverges if |x| > 1. If x = 1, the series becomes $\sum_{n=0}^{\infty} a_n$, which diverges by the n^{th} term test since $\lim a_n = \frac{3}{5} \neq 0$. Likewise,

when x = -1 the series becomes $\sum_{n=0}^{\infty} a_n(-1)^n$, which also diverges since $\lim a_n(-1)^n$ does not exist. Thus the series converges if and only if $x \in (-1,1)$.