
College of the Holy Cross, Fall 2016
Math 242, Midterm 1 Practice Questions

Solutions

1. Use Axioms 1 though 9 to prove that if x · y = x · z and x ̸= 0 then y = z.

Solution. Suppose x · y = x · z. Since x ̸= 0, Axiom 5(b) implies that there exists a
real number x−1 such that x · x−1 = 1. By Axiom 1, this implies x−1 · x = 1, so we
have

y = y · 1 by Axiom 4(b)

= 1 · y by Axiom 1

= (x−1 · x) · y since x−1 · x = 1

= x−1 · (x · y) by Axiom 2

= x−1 · (x · z) by hypothesis

= (x−1 · x) · z by Axiom 2

= 1 · z since x−1 · x = 1

= z · 1 by Axiom 1

= z by Axiom 4(b).

2. (a) Show that
√
3 is irrational.

Solution. Suppose
√
3 is rational. Then we could write

√
3 = m

n
, where m

and n are integers that have no common factors. This implies m2 = 3n2, so m2

is a multiple of 3. Now there are 3 possibilities for m: m = 3k, m = 3k + 1 or
m = 3k+2 for some integer k. If m = 3k+1, then m2 = (3k+1)2 = 9k2+6k+1 =
3(3k2+2k)+1. But this contradicts the fact that m2 is a multiple of 3. Likewise,
if m = 3k+2, then m2 = 9k2+12k+4 = 3(3k2+4k+1)+1, again contradicting
the fact that m2 is a multiple of 3. The only possibility therefore is that m = 3k
for some integer k. This then implies 9k2 = 3n2, so n2 = 3k2. Hence n2 is a
multiple of 3, and by reasoning as before, it follows that n is a multiple of 3. But
this means that both m and n share the common factor of 3, contrary to the
assumption. This contradiction implies that

√
3 is irrational.

(b) Suppose t > 0 is irrational. Prove that
√
t is irrational.

Solution. Suppose instead that
√
t is rational. Then

√
t = p/q where p and q

are integers and q ̸= 0. Then t = p2/q2 would also be rational, a contradiction.

3. Fix r ̸= 1. Use the principle of induction to prove that the summation formula

n∑
k=0

rk =
1− rn+1

1− r

holds for all n ∈ N.
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Solution. Denote this summation formula by Sn. When n = 1, the statement reads
1 + r = 1−r2

1−r
, which is true since 1− r2 = (1− r)(1 + r). Next suppose Sn is true for

some n ≥ 1. Then

n+1∑
k=0

rk =

(
n∑

k=0

rk

)
+ rn+1

=
1− rn+1

1− r
+ rn+1 since Sn is true

=
1− rn+1 + rn+1(1− r)

1− r

=
1− rn+2

1− r
,

so Sn+1 is true. Thus Sn implies Sn+1 and therefore by the principle of induction Sn is
true for all n ≥ 1.

4. Let A = {3− 1
n
: n ∈ N}. Find lubA, and prove your assertion.

Solution. lubA = 3. First, since 3− 1
n
< 3 for any n, 3 is an upper bound for A. Now

consider any number M < 3. Since 3−M > 0, the Archimedian Property implies that
there is some n ∈ N such that 1

n
< 3 −M . This implies 3 − 1

n
> M , so M is not an

upper bound of A. Therefore every upper bound M of A must satisfy M ≥ 3. Hence
3 is the least upper bound of A.

5. Let A = {x ∈ R | x5 − 2x < 1000}.

(a) Prove that A is bounded above.

Solution. 10 is an upper bound for A. To see this, suppose 10 is not an upper
bound for A. Then for some x ∈ A we have x > 10. But this would imply x4 >
104 = 10000, so x4 − 2 > 9998 and thus x5 − 2x = x(x4 − 2) > 10(9998) > 1000.
This contradicts the fact that x5 − 2x < 1000 for each x ∈ A. Hence 10 is an
upper bound for A.

(b) Prove that A has a least upper bound.

Solution. By the previous problem A is bounded above by 10. Since 05− 2(0) =
0 < 1000, 0 ∈ A, and thus A is nonempty. The Least Upper Bound Axiom then
implies that A has a least upper bound.

6. Suppose A and B are nonempty subsets of R that are bounded above and satisfy
lubA < lubB. Prove that there exists some y ∈ B such that x < y for every x ∈ A.

Solution. Since lub(A) < lub(B), lub(A) is not an upper bound for B. Hence there
exists some y ∈ B such that lub(A) < y. Since lub(A) is an upper bound for A,
x ≤ lub(A) for all x ∈ A. By transitivity it follows that x < y for all x ∈ A.

7. (a) Complete the following definition. A sequence xn to converges to a real number
a if

Solution. For any ϵ > 0 there exists some n0 ∈ N such that |xn − a| < ϵ for all
n ≥ n0.
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(b) Use the definition of convergence to prove that lim
n→∞

3n

2n− 1
=

3

2
.

Solution. Let ϵ > 0. Choose n0 ∈ N such that n0 > 3
2ϵ

(this is possible by the
Archimedian property since 3

2ϵ
> 0). Then for any n ≥ n0, we have n > 3

2ϵ
, so

3
2n

< ϵ and thus∣∣∣∣ 3n

2n− 1
− 3

2

∣∣∣∣ = 3

2(2n− 1)

≤ 3

2(n)
since 2n− 1 ≥ n when n ≥ 1

< ϵ

for all n ≥ n0.

8. Suppose lim an = 7. Show that there exists n0 ∈ N such that for all n ≥ n0 we have
an > 6.99.

Solution. Let ϵ = 0.01. Then since lim an = 7, there exists some n0 such that
|an − 7| < 0.01 for all n ≥ n0. This implies −0.01 < an − 7 < 0.01, or equivalently
6.99 < an < 7.01. Hence an > 6.99 for all n ≥ n0.

9. True or False. If True, give a short proof. If False, give a counterexample.

(a) If the sequences {xn} and {yn} both diverge, then the sequence {xnyn} diverges.

Solution. False, xn = yn = (−1)n both diverge, but xnyn = 1 converges.

(b) If r ̸= 0 is rational, and t is irrational, then t/r is irrational.

Solution. True. Suppose t/r is rational. Then t/r = m/n for some integers m
and n with n ̸= 0. Solving for t then gives t = rm/n. Since r is rational, r = p/q
where p and q are integers and q ̸= 0. Thus t = (mp)/(nq). Since mp and nq
are integers and nq ̸= 0 it follows that t is rational, a contradiction. Hence t/r is
irrational.

10. Suppose xn converges to 0. Prove that 3
√
xn converges to 0.

Solution. Let ϵ > 0. Since xn → 0, there exists some n0 ∈ N such that |xn| < ϵ3 for
all n ≥ n0. Thus | 3

√
xn| < ϵ for all n ≥ n0.

11. Suppose lim xn = 0 and yn is bounded. Prove that limxnyn = 0.

Solution. Since yn is bounded, there exists a real number M > 0 such that |yn| ≤ M
for all n. Let ϵ > 0. Since xn → 0, there exists some n0 ∈ N such that |xn − 0| < ϵ

M

for all n ≥ n0. Thus

|xnyn − 0| = |xn||yn| ≤ M |xn| < M · ϵM = ϵ

for all n ≥ n0. Hence lim xnyn = 0.

12. Let xn be a sequence with the property that x2
n − 5xn converges to 14.
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(a) If xn converges what are the only possible values of its limit?

Solution. Let a = lim xn. By the Algebraic Limit Theorem, limx2
n − 5xn =

a2 − 5a, so a2 − 5a = 14. The solutions of this equation are a = 7 and a = −2.

(b) Must xn converge?

Solution. No. The sequence xn = 7,−2, 7,−2, 7,−2, . . . satisfies x2
n − 5xn = 14

for all n, so x2
n − 5xn converges to 14, but xn does not converge.

13. Consider the sequence defined recursively by x1 = 1 and xn+1 =
x2
n+8
6

.

(a) Prove that the sequence xn is increasing.

Solution. By induction. Let Sn denote the statement xn ≤ xn+1. Since x1 = 1 <
9
6
= x2, this proves S1 is true. Now suppose xk ≤ xk+1 for some k ≥ 1. Then since

both xk and xk+1 are positive, this implies x2
k ≤ x2

k+1. Adding 8 and dividing by

6 then gives
x2
k+8

6
≤ x2

k+1+8

6
, which implies xk+1 ≤ xk+2. Thus Sk =⇒ Sk+1 for

all k ≥ 1, so by the principle of induction, Sn is true for all n ∈ N. Hence xn is
increasing.

(b) Prove that xn ≤ 3 for all n.

Solution. By induction again. Let Sn denote the statement xn ≤ 3. The base
case S1 is true since x1 = 1 < 3. So suppose xk ≤ 3 for some k ≥ 1. Then since xk

is positive, x2
k ≤ 9. Adding 8 and dividing by 6 then gives

x2
k+8

6
≤ 17

6
< 3. Thus

xk+1 ≤ 3. Hence Sk =⇒ Sk+1 for all k ≥ 1, so by the principle of induction Sn

is true for all n ∈ N.
(c) Prove that the sequence xn converges, and find its limit.

Solution. By parts (a) and (b), the sequence xn is monotone and bounded (above
by 3 and below by x1 = 1 since xn is increasing), so xn converges by the Monotone
Convergence Theorem. Let a = lim xn. Then, using the algebraic limit theorem,

a = lim xn+1 = lim
x2
n + 8

6
=

a2 + 8

6
,

so a2 + 8 = 6a which implies a = 2 or a = 4. But since xn ≤ 3 for all n, we have
a ≤ 3. Thus a = 2.

14. Consider the sequence defined recursively by y1 = 5 and yn+1 =
y2n + 8

6
.

(a) Use induction to prove that yn ≥ 5 for all n.

Solution. When n = 1, we have y1 = 5 ≥ 5. Now suppose yn ≥ 5 for some

n ≥ 1. Then y2n ≥ 25, so y2n + 8 ≥ 33 and therefore yn+1 = y2n+8
6

≥ 33
6

> 5, so
yn+1 ≥ 5.

(b) Prove by contradiction that yn diverges.

Solution. Suppose yn converges. Let a = lim yn. Then by the Algebraic Limit

Theorem, lim yn+1 = lim y2n+8
6

= a2+8
6

. But lim yn+1 = lim yn = a, so we have

a = a2+8
6

. The solutions of this equation are a = 2 and a = 4. But since yn ≥ 5
for all n, a must be at least 5, a contradiction.
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15. Determine whether or not each sequence converges, and find the limit of those that
converge.

(a) xn = 3
5n2+4

if n is even and xn = n
1−5n

if n is odd.

Solution. Using the fact that lim 1
k
= lim 1

k2
= 0 together with the algebraic

limit theorem, we have

limx2k = lim
3

5(2k)2 + 4
= lim

3
k2

20 + 4
k2

=
0

20
= 0

and

limx2k+1 = lim
2k + 1

1− 5(2k + 1)
= lim

2 + 1
k

− 4
k
− 10

=
2

−10
= −1

5
.

Thus xn has subsequences that converge to different limits, so xn does not con-
verge.

(b) xn = 3n
5n+4

if n is even and xn = 1−3n
1−5n

if n is odd.

Solution. Using the fact that lim 1
k
= lim 1

k2
= 0 together with the algebraic

limit theorem, we have

limx2k = lim
6k

10k + 4
= lim

6

10 + 4
k

=
6

10
=

3

5

and

limx2k+1 = lim
1− 3(2k + 1)

1− 5(2k + 1)
= lim

−6− 2
k

− 5
k
− 10

=
−6

−10
=

3

5
.

Therefore, by the theorem we proved in class, since both x2k and x2k+1 converge
to 3

5
, xn converges to 3

5
.
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