College of the Holy Cross, Fall 2016
Math 242, Midterm 1 Practice Questions
Solutions

1. Use Axioms 1 though 9 to prove that if -y =x -2z and = # 0 then y = 2.

2.

Solution. Suppose -y = x - z. Since x # 0, Axiom 5(b) implies that there exists a

real number z~
have
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(b)
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Show that v/3 is irrational.
Solution. Suppose /3 is rational. Then we could write v/3 = @, where m

and n are integers that have no common factors. This implies m? _ 3n?, so m?
is a multiple of 3. Now there are 3 possibilities for m: m = 3k, m = 3k + 1 or
m = 3k+2 for some integer k. If m = 3k+1, then m? = (3k+1)? = 9k*+6k+1 =
3(3k*+2k) + 1. But this contradicts the fact that m? is a multiple of 3. Likewise,
if m = 3k +2, then m? = 9k? + 12k +4 = 3(3k* + 4k + 1) + 1, again contradicting
the fact that m? is a multiple of 3. The only possibility therefore is that m = 3k
for some integer k. This then implies 9k = 3n?, so n? = 3k%. Hence n? is a
multiple of 3, and by reasoning as before, it follows that n is a multiple of 3. But
this means that both m and n share the common factor of 3, contrary to the
assumption. This contradiction implies that v/3 is irrational.

Suppose t > 0 is irrational. Prove that /¢ is irrational.

Solution. Suppose instead that /% is rational. Then v/t = p/q where p and ¢
are integers and ¢ # 0. Then t = p?/¢* would also be rational, a contradiction.

3. Fix r # 1. Use the principle of induction to prove that the summation formula

1—rnt
ZT -7

holds for all n € N.



Solution. Denote this summation formula by S,,. When n = 1, the statement reads

1+r= 11:7":, which is true since 1 — 72 = (1 — 7)(1 + r). Next suppose S, is true for

some n > 1. Then

n+1 n
E k= E Pk | 4t
k=0 k=0
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S0 Sy11 is true. Thus S, implies S,,,1 and therefore by the principle of induction .5, is
true for all n > 1.

4. Let A= {3 —+ :n e N}. Find lub A, and prove your assertion.

Solution. lub A = 3. First, since 3 — % < 3 for any n, 3 is an upper bound for A. Now
consider any number M < 3. Since 3— M > 0, the Archimedian Property implies that
there is some n € N such that % < 3 — M. This implies 3 — % > M, so M is not an
upper bound of A. Therefore every upper bound M of A must satisfy M > 3. Hence
3 is the least upper bound of A.

5. Let A= {x € R|z°— 2z < 1000}.

(a) Prove that A is bounded above.

Solution. 10 is an upper bound for A. To see this, suppose 10 is not an upper
bound for A. Then for some # € A we have x > 10. But this would imply z* >
10* = 10000, so z* — 2 > 9998 and thus z° — 2z = x(z* — 2) > 10(9998) > 1000.
This contradicts the fact that 2% — 2z < 1000 for each 2 € A. Hence 10 is an
upper bound for A.

(b) Prove that A has a least upper bound.

Solution. By the previous problem A is bounded above by 10. Since 0° —2(0) =
0 < 1000, 0 € A, and thus A is nonempty. The Least Upper Bound Axiom then
implies that A has a least upper bound.

6. Suppose A and B are nonempty subsets of R that are bounded above and satisfy
lub A < lub B. Prove that there exists some y € B such that x < y for every x € A.

Solution. Since lub(A) < lub(B), lub(A) is not an upper bound for B. Hence there
exists some y € B such that lub(A) < y. Since lub(A) is an upper bound for A,
x < lub(A) for all x € A. By transitivity it follows that = < y for all x € A.

7. (a) Complete the following definition. A sequence x, to converges to a real number
a if
Solution. For any € > 0 there exists some ny € N such that |z, — a| < € for all
n > ng.



10.

11.

12.

3n 3

(b) Use the definition of convergence to prove that lim =_.
n—soo2n —1 2

Solution. Let € > 0. Choose nyg € N such that ng > 2% (this is possible by the
Archimedian property since % > 0). Then for any n > ng, we have n > %, SO

2
—23 < € and thus
n

3n 3] 3

2n—1 2| 2(2n-1)
Si since 2n — 1 > n when n > 1
2(n)
<e

for all n > ny.
Suppose lima,, = 7. Show that there exists ny € N such that for all n > ny we have
a, > 6.99.

Solution. Let ¢ = 0.01. Then since lima, = 7, there exists some ng such that
la, — 7] < 0.01 for all n > ng. This implies —0.01 < a,, — 7 < 0.01, or equivalently
6.99 < a,, < 7.01. Hence a,, > 6.99 for all n > ny.

True or False. If True, give a short proof. If False, give a counterexample.

(a) If the sequences {z,} and {y,} both diverge, then the sequence {x,y,} diverges.
Solution. False, z,, = y, = (—1)" both diverge, but x,y, = 1 converges.

(b) If r # 0 is rational, and ¢ is irrational, then ¢/r is irrational.
Solution. True. Suppose t/r is rational. Then ¢/r = m/n for some integers m
and n with n # 0. Solving for ¢ then gives t = rm/n. Since r is rational, r = p/q
where p and ¢ are integers and ¢ # 0. Thus t = (mp)/(nq). Since mp and ng
are integers and ng # 0 it follows that ¢ is rational, a contradiction. Hence t/r is
irrational.

Suppose x,, converges to 0. Prove that 3/x, converges to 0.

Solution. Let € > 0. Since z,, — 0, there exists some ny € N such that |z,| < € for

all n > ng. Thus |¢/z,| < € for all n > ny.

Suppose lim z,, = 0 and y,, is bounded. Prove that lim z,y, = 0.

Solution. Since y, is bounded, there exists a real number M > 0 such that |y,| < M
for all n. Let € > 0. Since x, — 0, there exists some ny € N such that |z, — 0| < i
for all n > ng. Thus

|xnyn - Ol - |xn||yn| < M’$n’ <M -eM=c¢
for all n > ngy. Hence lim z,y, = 0.

Let x,, be a sequence with the property that z2 — 5x,, converges to 14.



(a) If x,, converges what are the only possible values of its limit?

(b)

13. Consider the sequence defined recursively by x; = 1 and x,,.1 =

(a)

Solution. Let a = limx,. By the Algebraic Limit Theorem, lim 22 — 5z, =
a® — 5a, so a®> — ba = 14. The solutions of this equation are @ = 7 and a = —2.
Must x,, converge?

Solution. No. The sequence z,, = 7,—2,7,—2,7,—2,... satisfies 22 — 5x,, = 14
for all n, so x2 — 5z,, converges to 14, but x,, does not converge.

z2+8
6

Prove that the sequence x,, is increasing.

Solution. By induction. Let S, denote the statement x,, < z,,,. Since r1 =1 <
% = Ty, this proves S is true. Now suppose xp < x;1 for some k > 1. Then since
both z; and x4, are positive, this implies 27 < z7,,. Adding 8 and dividing by

. 2 2.,+8 C .
6 then gives nt8 < m’”g , which implies .1 < zpyo. Thus Sy = Sj1 for

all £ > 1, so by the principle of induction, .5, is true for all n € N. Hence z,, is
increasing.

Prove that z,, < 3 for all n.

Solution. By induction again. Let S, denote the statement z, < 3. The base
case S is true since 1 = 1 < 3. So suppose z, < 3 for some k£ > 1. Then since z},
is positive, 22 < 9. Adding 8 and dividing by 6 then gives @ < %7 < 3. Thus
Tpr1 < 3. Hence S, = Sk for all £ > 1, so by the principle of induction S,
is true for all n € N.

Prove that the sequence x,, converges, and find its limit.

Solution. By parts (a) and (b), the sequence x,, is monotone and bounded (above
by 3 and below by z; = 1 since z,, is increasing), so x,, converges by the Monotone
Convergence Theorem. Let a = lim x,,. Then, using the algebraic limit theorem,

z;+8  a*+8
6 6 '

so a? + 8 = 6a which implies @ = 2 or a = 4. But since z,, < 3 for all n, we have
a < 3. Thus a = 2.

a =limx,; = lim

v+ 8

14. Consider the sequence defined recursively by y; = 5 and y,11 = .

(a)

6

Use induction to prove that y, > 5 for all n.

Solution. When n = 1, we have y; = 5 > 5. Now suppose v, > 5 for some
2

n > 1. Then y2 > 25, so y> + 8 > 33 and therefore y,,1 = y”TJFB > % > 5, s0

yn+1 Z 5

Prove by contradiction that v, diverges.

Solution. Suppose y, converges. Let a = limy,. Then by the Algebraic Limit
2
Theorem, limy,.; = lim 8 — 248 Byt lim Yni1 = limy, = a, so we have

6 6
a = %. The solutions of this equation are a = 2 and a = 4. But since y,, > 5

for all n, @ must be at least 5, a contradiction.
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15. Determine whether or not each sequence converges, and find the limit of those that
converge.

(a) &n = g if nis even and z, = % if 7 is odd.

Solution. Using the fact that lim% = limki2 = 0 together with the algebraic
limit theorem, we have

3 = 0
1i =lim—— =1 B = — =0
o T 20+ & 20
and
2k + 1 . 244 2 1

li - lim——— — ——
e T T T k1) =210 —10 5

Thus x,, has subsequences that converge to different limits, so x,, does not con-
verge.

_ _3n_ : _ 1-3n : .
(b) @, = g2 if nis even and z,, = 1=, if n is odd.

Solution. Using the fact that lim% = limki2 = 0 together with the algebraic
limit theorem, we have

. h Ok 6 6 3
mazop =llm——m=lm—5 = — = -
2 10k + 4 10+f 10 5
and
. iy L=3@k+ 1) 6 2 -6 3
1Im T =1m ——— = 111m = = —.
2t 1—5(2k+1) -2-10 -10 5

Therefore, by the theorem we proved in class, since both g, and xok 1 converge

3 3
to £, x, converges to :.



