College of the Holy Cross, Fall 2016 Math 242, Midterm 1 Practice Questions

- 1. Use Axioms 1 though 9 to prove that if $x \cdot y = x \cdot z$ and $x \neq 0$ then y = z.
- 2. (a) Show that $\sqrt{3}$ is irrational.
 - (b) Suppose t > 0 is irrational. Prove that \sqrt{t} is irrational.
- 3. Fix $r \neq 1$. Use the principle of induction to prove that the summation formula

$$\sum_{k=0}^{n} r^k = \frac{1 - r^{n+1}}{1 - r}$$

holds for all $n \in \mathbb{N}$.

- 4. Let $A = \{3 \frac{1}{n} : n \in \mathbb{N}\}$. Find lub A, and prove your assertion.
- 5. Let $A = \{x \in \mathbb{R} \mid x^5 2x < 1000\}.$
 - (a) Prove that A is bounded above.
 - (b) Prove that A has a least upper bound.
- 6. Suppose A and B are nonempty subsets of \mathbb{R} that are bounded above and satisfy lub A < lub B. Prove that there exists some $y \in B$ such that x < y for every $x \in A$.
- 7. (a) Complete the following definition. A sequence x_n to converges to a real number a if
 - (b) Use the definition of convergence to prove that $\lim_{n\to\infty} \frac{3n}{2n-1} = \frac{3}{2}$.
- 8. Suppose $\lim a_n = 7$. Show that there exists $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$ we have $a_n > 6.99$.
- 9. True or False. If True, give a short proof. If False, give a counterexample.
 - (a) If the sequences $\{x_n\}$ and $\{y_n\}$ both diverge, then the sequence $\{x_ny_n\}$ diverges.
 - (b) If $r \neq 0$ is rational, and t is irrational, then t/r is irrational.
- 10. Suppose x_n converges to 0. Prove that $\sqrt[3]{x_n}$ converges to 0.
- 11. Suppose $\lim x_n = 0$ and y_n is bounded. Prove that $\lim x_n y_n = 0$.
- 12. Let x_n be a sequence with the property that $x_n^2 5x_n$ converges to 14.
 - (a) If x_n converges what are the only possible values of its limit?
 - (b) Must x_n converge?
- 13. Consider the sequence defined recursively by $x_1 = 1$ and $x_{n+1} = \frac{x_n^2 + 8}{6}$.

1

- (a) Prove that the sequence x_n is increasing.
- (b) Prove that $x_n \leq 3$ for all n.
- (c) Prove that the sequence x_n converges, and find its limit.
- 14. Consider the sequence defined recursively by $y_1 = 5$ and $y_{n+1} = \frac{y_n^2 + 8}{6}$.
 - (a) Use induction to prove that $y_n \ge 5$ for all n.
 - (b) Prove by contradiction that y_n diverges.
- 15. Determine whether or not each sequence converges, and find the limit of those that converge.
 - (a) $x_n = \frac{3}{5n^2+4}$ if n is even and $x_n = \frac{n}{1-5n}$ if n is odd.
 - (b) $x_n = \frac{3n}{5n+4}$ if n is even and $x_n = \frac{1-3n}{1-5n}$ if n is odd.
- 16. I will ask you to write a complete proof of **one** of the following.
 - (a) For every a > 0, there exists a real number b > 0 such that $b^2 = a$.
 - (b) If $\lim x_n = a$ and $\lim y_n = b$, then $\lim x_n + y_n = a + b$
 - (c) If x_n is bounded and monotone, then x_n converges.