College of the Holy Cross, Fall 2016 Math 242, Principles of Analysis Cauchy Condensation Test

The following test for convergence is known as the Cauchy Condensation Test. It applies to series with nonnegative, decreasing terms.

Theorem. Suppose $a_n \ge 0$ for all n and a_n is a decreasing sequence. Then the series $\sum_{n=1}^{\infty} a_n$

converges if and only if the series $\sum_{n=0}^{\infty} 2^n a_{2^n}$ converges.

Note. This is an if an only if statement, so this means that either both series converge or both series diverge. Thus the convergence/divergence of the series $\sum_{n=1}^{\infty} a_n$ is determined by

what happens with the series $\sum_{n=0}^{\infty} 2^n a_{2^n}$.

Proof. Let

$$s_n = \sum_{k=1}^n a_k$$
 and $t_n = \sum_{k=0}^n 2^k a_{2^k}$

be the partial sums of the two series. First suppose the series $\sum_{n=0}^{\infty} 2^n a_{2^n}$ converges. Then the sequence t_n converges and is therefore bounded, so there is some M such that $t_n \leq M$ for all n. Now observe that, since the sequence a_n is decreasing,

$$s_1 = a_1 = t_0$$

$$s_3 = a_1 + (a_2 + a_3) \le a_1 + 2a_2 = t_1$$

$$s_7 = a_1 + (a_2 + a_3) + (a_4 + a_5 + a_6 + a_7) \le a_1 + 2a_2 + 4a_4 = t_2$$

$$s_{15} \le a_1 + 2a_2 + 4a_4 + 8a_8 = t_3$$

and in general $s_{2^n-1} \leq t_{n-1} \leq M$. This proves that the subsequence s_{2^n-1} is bounded. But since s_n is increasing, this implies that s_n is bounded. So by the Monotone Convergence Theorem, s_n converges.

Conversely, suppose that $\sum_{n=1}^{\infty} a_n$ converges. Then s_n converges and is therefore bounded, so there exists M such that $s_n \leq M$ for all n. Now notice that

$$2s_2 = 2a_1 + 2a_2 = a_1 + (a_1 + 2a_2) = a_1 + t_1$$

$$2s_4 = a_1 + (a_1 + 2a_2 + 2a_3 + 2a_4) \ge a_1 + (a_1 + 2a_2 + 4a_4) = a_1 + t_2$$

$$2s_8 = a_1 + (a_1 + 2a_2 + 2a_3 + 2a_4 + 2a_5 + 2a_6 + 2a_7 + 2a_8) \ge a_1 + (a_1 + 2a_2 + 4a_4 + 8a_8) = a_1 + t_3$$

$$2s_{16} \ge a_1 + (a_1 + 2a_2 + 4a_4 + 8a_8 + 16a_{16}) = a_1 + t_4$$

and in general $2s_{2^n} \ge a_1 + t_n$. Thus $t_n \le 2s_{2^n} \le 2M$ for all n, so the sequence t_n is bounded. Since t_n is increasing, the Monotone Convergence Theorem implies that t_n converges.

Example. Let's apply the Cauchy Condensation Test to the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ for some p > 0.

Here $a_n = \frac{1}{n^p}$, so

$$2^{n}a_{2^{n}} = \frac{2^{n}}{(2^{n})^{p}} = (2^{n})^{1-p} = (2^{1-p})^{n}.$$

Thus

$$\sum_{n=0}^{\infty} 2^n a_{2^n} = \sum_{n=0}^{\infty} (2^{1-p})^n.$$

This is a geometric series with ratio $r=2^{1-p}$. It therefore converges when $2^{1-p}<1$ and diverges when $2^{1-p}\geq 1$. Thus the *p*-series converges when p>1 and diverges when $p\leq 1$.