
DETERMINANTS ASSOCIATEDTO ZETA MATRICES OF POSETSCristina M. BallantineSharon M. Fre
hetteJohn B. LittleCollege of the Holy CrossApril 5, 2005Abstra
t. We 
onsider the matrix ZP = ZP +ZtP , where the entries of ZP are thevalues of the zeta fun
tion of the �nite poset P . We give a 
ombinatorial interpreta-tion of the determinant of ZP and establish a re
ursive formula for this determinantin the 
ase in whi
h P is a boolean algebra.
x1. Introdu
tionThe theory of partially ordered sets (posets) plays an important role in enu-merative 
ombinatori
s and beyond. For example, the M�obius inversion formulafor posets generalizes several fundamental theorems in
luding the number-theoreti
M�obius inversion theorem. For a detailed review of posets and M�obius inversion werefer the reader to [S1℄, 
hapter 3, and [Sa℄. Below we provide a short expositionof the basi
 fa
ts on the subje
t following [S1℄.A partially ordered set (poset) P is a set whi
h, by abuse of notation, we also 
allP together with a binary relation, 
alled a partial order and denoted �, satisfying:(1) x � x for all x 2 P (re
exivity).(2) If x � y and y � x, then x = y (antisymmetry).(3) If x � y and y � z, then x � z (transitivity).1991 Mathemati
s Subje
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2 DETERMINANTS OF ZETA MATRICESTwo elements x and y are 
omparable if x � y or y � x. Otherwise they arein
omparable. We write x < y to mean x � y and x 6= y.De�nition. Let n 2 N . Consider the poset Pn of subsets of [n℄ under the in
lusionrelation. This poset is 
alled a boolean algebra of rank n. In [S1℄ it is denoted by2[n℄.The zeta fun
tion � of a poset P is de�ned by �(x; y) = 1 for all x � y in P .The zeta fun
tion belongs to the in
iden
e algebra I(P ) of P [S1℄. If P is a lo
ally�nite poset (i.e. every interval in P is �nite), the zeta fun
tion � is invertible inthe algebra I(P ). Its inverse is 
alled the M�obius fun
tion of P and is denoted by�. Note that one 
an de�ne � indu
tively by�(x; x) = 1, for all x 2 P;�(x; y) = � Xx�z<y �(x; z), for all x < y in P .For the remainder of the arti
le, P will be a poset with n elements and thepartial order denoted by �. We 
hoose a labelling x1; x2; : : : ; xn of the elements ofP su
h that xi < xj =) i < j.De�nition. The zeta matrix ZP of a poset P is de�ned as the n� n matrix withentries (ZP )ij = � 1 if xi � xj0 otherwise = � �(xi; xj) if xi � xj0 otherwiseObserve that, with the 
hosen labelling, the zeta matrix is unipotent uppertriangular. Its non-zero entries are the values of the zeta fun
tion.We de�ne the matrix ZP by ZP = ZP+ZtP . In Se
tion x2 we give a 
ombinatorialinterpretation of the determinant of ZP . The main theorem of the paper evaluatesthe determinant of Zn := ZPn when Pn is the boolean algebra of rank n. Morespe
i�
ally, in Se
tion x3, we prove the following re
ursive formula on n.Main Theorem. If n � 3 is odd, then det(Zn) = 0. If n is even, thendet(Zn) = 2�n ;where �2 = 2, and �n = 4�n�2 � 2 for n � 4.Consider also the matrix MP de�ned by MP = MP +M tP , where MP = Z�1P .The non-zero entries of MP are the values of the M�obius fun
tion. We refer to MPas the M�obius matrix of the poset P . We have the following theorem.



DETERMINANTS OF ZETA MATRICES 3Theorem 1. det(MP ) = det(ZP ).Proof. The theorem is a dire
t 
onsequen
e of the following lemma. �Lemma 1. Let U be an n � n matrix su
h that det(U) = 1 and let V = U�1.Then, det(U + U t) = det(V + V t).Proof. We haveV t + V = (U�1)t + U�1 = (U�1)tUU�1 + (U t)�1U tU�1 = (U�1)t[U + U t℄U�1:Thus det(V + V t) = det((U�1)t) det(U + U t) det(U�1) and sin
e det(U) = 1, wehave det(V + V t) = det(U + U t). �The �rst author would like to thank Steve Fisk for suggesting the re
ursion ofthe Main Theorem. The Theorem was 
onje
tured by Steve Fisk in an unpublishedmanus
ript on orthogonal polynomials on posets.x2. Combinatorial interpretation of det(ZP )In this se
tion, we dis
uss a 
ombinatorial interpretation of det(ZP ), given interms of the adja
en
y matri
es of 
omparability graphs. Spe
i�
ally, 
onsider aposet P as in the previous se
tion with jP j = n. The matrix YP = ZP�In, in whi
hthe diagonal entries of ZP are repla
ed by 0, 
an be interpreted as the adja
en
ymatrix of a dire
ted graph (digraph) GP asso
iated to the stri
t order relation x < yin P . The verti
es of GP are the elements of P , and there is a dire
ted edge from xto y if and only if x < y. Elsewhere in the literature GP is 
alled the 
omparabilitygraph of the poset P . Similarly, the matrix YP = YP + Y tP is the adja
en
y matrixof the dire
ted graph DP in whi
h there are edges in both dire
tions between ea
hpair of distin
t 
omparable elements x; y 2 P . Then we haveZP = ZP + ZtP = YP + Y tP + 2In = YP + 2In;and det(ZP ) = det(YP + 2In) = �(�2) where �(t) is the 
hara
teristi
 polynomial�(t) = det(YP � tIn) of the matrix YP . We will also 
all this the 
hara
teristi
polynomial of the graph DP . The 
oeÆ
ients of this 
hara
teristi
 polynomial areexpli
itly related to the number of 
olle
tions of disjoint dire
ted 
y
les in the graphDP . For further details we refer the interested reader to [C℄.x3. The Boolean algebra 
aseLet [n℄ = f1; 2; : : : ; ng and 
onsider the poset Pn = 2[n℄ of subsets of [n℄ underthe in
lusion relation. Let Zn be the matrix de�ned in x1. The main result of thepaper is the following theorem.



4 DETERMINANTS OF ZETA MATRICESTheorem 2. If n � 3 is odd, then det(Zn) = 0. If n is even, thendet(Zn) = 2�n ;where �2 = 2, and �n = 4�n�2 � 2 for n � 4.The proof of the theorem will rely on several lemmas. First, we identify aparti
ularly useful labelling of Pn = 2[n℄ for our purposes, and we 
onsider onlythis labelling for the remainder of the paper. Ea
h subset A 2 Pn will be en
odedas a binary ve
tor v(A) of length n:v(A) = (vn; vn�1; : : : ; v1)where vi = � 1 if i 2 A;0 if not.For example, in P2, v(;) = 00, v(f1g) = 01, v(f2g) = 10 and v(f1; 2g) = 11.Our labelling of Pn indu
es the usual numeri
al ordering when we interpret v(A)as the binary expansion of an integer m, with 0 � m � 2n � 1.Using this labelling yields an interesting re
ursive stru
ture in the matri
es Zn.Lemma 2. The matri
es Zn and Zn have the following properties.(1) The entries of Zn above the diagonal are the �rst 2n rows in the Pas
altriangle modulo 2.(2) For n � 2, Zn and Zn have blo
k de
ompositions:Zn = �Zn�1 Zn�10 Zn�1 � and Zn = � Zn�1 Zn�1Ztn�1 Zn�1 � :(This statement also holds with n = 1 if we take Z0 = 2, Z0 = 1.)(3) The Zn matrix sequen
e 
an be generated by a re
ursive pro
edure as follows.Given Zn�1, to form Zn we repla
e ea
h entry 1 by a 2� 2 blo
k � 1 10 1�and ea
h entry 0 by a 2 � 2 zero matrix. From part (2), we get a similarre
ursive pro
edure for the Zn sequen
e.Proof. These properties follow dire
tly from the de�nition of the matri
es Zn andZn and the properties of the preferred labelling on Pn. �To evaluate the determinant det(Zn), we follow the general advi
e of [K℄ andintrodu
e parameters in the matrix entries. Spe
i�
ally, we 
onsider the matrix:Zn(x; y) = xZn + yZtn = �xZn�1 + yZtn�1 xZn�1yZtn�1 xZn�1 + yZtn�1 �



DETERMINANTS OF ZETA MATRICES 5Using the Maple 
omputer algebra system, the determinants of the �rst few of thesematri
es are found to be:
(4) n det(Zn(x; y))1 x2 + xy + y22 (x+ y)2(x2 � xy + y2)3 (x� y)2(x2 + xy + y2)34 (x+ y)6(x2 � xy + y2)55 (x� y)10(x2 + xy + y2)11An interesting re
urren
e explains the patterns evident in these examples.Lemma 3. The determinants of the Zn(x; y) matri
es are related by the followingre
urren
e: det(Zn+2(x; y)) = (det(Zn(x; y))2 det(Zn+1(x;�y)):(Note that the right side involves both Zn+1 and Zn and that y is negated in these
ond fa
tor.)Proof. We use part (2) of Lemma 2 twi
e to form the following blo
k de
ompo-sition of Zn+2(x; y):Zn+2(x; y) = 0B�xZn + yZtn xZn xZn xZnyZtn xZn + yZtn 0 xZnyZtn 0 xZn + yZtn xZnyZtn yZtn yZtn xZn + yZtn1CA(where ea
h entry is a blo
k of size 2n � 2n). To evaluate the determinant, weperform blo
k-wise row and 
olumn operations. To simplify the notation, we writeZ = Zn First subtra
t row 4 from ea
h of the �rst three rows to obtain:0B� xZ xZ � yZt xZ � yZt �yZt0 xZ �yZt �yZt0 �yZt xZ �yZtyZt yZt yZt xZ + yZt1CA :Subtra
t 
olumn 1 from ea
h of the 
olumns 2,3,4 to obtain:0B� xZ �yZt �yZt �xZ � yZt0 xZ �yZt �yZt0 �yZt xZ �yZtyZt 0 0 xZ 1CA :Next, subtra
t 
olumn 2 from 
olumn 4:0B� xZ �yZt �yZt �xZ0 xZ �yZt �xZ � yZt0 �yZt xZ 0yZt 0 0 xZ 1CA :



6 DETERMINANTS OF ZETA MATRICESAdd 
olumn 1 to 
olumn 4, then add row 4 in the resulting matrix to row 2:Z0 = 0B� xZ �yZt �yZt 0yZt xZ �yZt 00 �yZt xZ 0yZt 0 0 xZ + yZt1CA :Expanding along the last 
olumn we obtain(5) det(Zn+2(x; y)) = det(Z0) = det(xZ + yZt) det0� xZ �yZt �yZtyZt xZ �yZt0 �yZt xZ 1A :The �rst fa
tor on the right of (5) is det(Zn(x; y)). Continuing with the 3 � 3matrix, subtra
t 
olumn 3 from 
olumn 2:0� xZ 0 �yZtyZt xZ + yZt �yZt0 �xZ � yZt xZ 1A ;then add row 3 to row 2:0� xZ 0 �yZtyZt 0 xZ � yZt0 �xZ � yZt xZ 1A :Expanding along 
olumn 2, we havedet(Zn+2(x; y)) = det(Zn(x; y))2 det� xZ �yZtyZt xZ � yZt �= det(Zn(x; y))2 det�xZ � yZt �yZtxZ xZ � yZt�= det(Zn(x; y))2 det(Zn+1(x;�y));as 
laimed. For the last equality, we perform row and 
olumn inter
hanges to putthe �nal matrix shown into the form:�xZ � yZt xZ�yZt xZ � yZt�required for Zn+1(x;�y). �From the initial 
ases 
omputed with Maple in (4) and the re
urren
e fromLemma 3, we see that there are nonnegative integers �n; �n su
h that(6) det(Zn(x; y)) = (x+ (�1)ny)�n(x2 � (�1)nxy + y2)�n :Moreover, the re
urren
e from Lemma 3 implies that(7) � �n+2 = 2�n + �n+1;�n+2 = 2�n + �n+1:We also have the following fa
t that is evident from (4):



DETERMINANTS OF ZETA MATRICES 7Lemma 4. For all n � 1, �n = �n + (�1)n+1.Proof. This follows by indu
tion. The base 
ases 
ome from the Maple 
om-putations in (4) above: �1 = 0; �1 = 1, and �2 = 2; �2 = 1. For the indu
tionstep, assume that the 
laim of the lemma has been proved for all ` � k + 1. Thensubtra
ting the two re
urren
es from (7) shows that�k+2��k+2 = 2(�k��k)+�k+1��k+1 = 2(�1)k+1+(�1)k+2 = (�1)k+1 = (�1)k+3: �Proof of Theorem 2: To determine the determinant of the original Zn = Zn(1; 1),we simply substitute x = y = 1 in (6). The fa
tors of x� y show immediately thatdet(Zn) = 0 if n is odd. Moreover, when n is even we have det(Zn) = 2�n . We solvethe �rst re
urren
e in (7) for �n by the standard method for se
ond order linearre
urren
es with 
onstant 
oeÆ
ients. The 
hara
teristi
 equation is r2�r�2 = 0,whose roots are r = 2;�1. Hen
e �n = 
1(2)n + 
2(�1)n for some 
onstants 
1; 
2.The initial 
onditions �1 = 0; �2 = 2 show that 
1 = 1=3; 
2 = 2=3. Hen
e:�n = 13(2)n + 23(�1)n:Hen
e if n, and therefore also n+ 2, are even, we have�n+2 = 13(2)n+2 + 23 = 4�13(2)n + 23�� 2 = 4�n � 2: �Corollary 1. If n is even, thendet(Zn) = 2 2n+23 :Referen
es[C℄ D. Cvetkovi�
, M. Doob, H. Sa
hs, Spe
tra of Graphs{Theory and Appli
ations, 3rd Revisedand Enlarged Edition, J.A. Barth Verlag, Heidelberg, Leipzig, 1995..[K℄ C. Krattenthaler, Advan
ed Determinant Cal
ulus, S�em. Lothar. Combin. 42 (1999).[Sa℄ B.E. Sagan, Why the Chara
teristi
 Polynomial Fa
tors, Bull. AMS 36, no. 2 (1999), 113-133.[S1℄ R. Stanley, Enumerative Combinatori
s, vol. 1, Cambridge University Press, Cambridge,1997.Department of Mathemati
s and Computer S
ien
e, College of the Holy Cross,Wor
ester, MA 01610E-mail address: (
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