
DETERMINANTS ASSOCIATEDTO ZETA MATRICES OF POSETSCristina M. BallantineSharon M. FrehetteJohn B. LittleCollege of the Holy CrossApril 5, 2005Abstrat. We onsider the matrix ZP = ZP +ZtP , where the entries of ZP are thevalues of the zeta funtion of the �nite poset P . We give a ombinatorial interpreta-tion of the determinant of ZP and establish a reursive formula for this determinantin the ase in whih P is a boolean algebra.
x1. IntrodutionThe theory of partially ordered sets (posets) plays an important role in enu-merative ombinatoris and beyond. For example, the M�obius inversion formulafor posets generalizes several fundamental theorems inluding the number-theoretiM�obius inversion theorem. For a detailed review of posets and M�obius inversion werefer the reader to [S1℄, hapter 3, and [Sa℄. Below we provide a short expositionof the basi fats on the subjet following [S1℄.A partially ordered set (poset) P is a set whih, by abuse of notation, we also allP together with a binary relation, alled a partial order and denoted �, satisfying:(1) x � x for all x 2 P (reexivity).(2) If x � y and y � x, then x = y (antisymmetry).(3) If x � y and y � z, then x � z (transitivity).1991 Mathematis Subjet Classi�ation. 15A15, 05C20, 05C50, 06A11.Key words and phrases. poset, zeta funtion, M�obius funtion. Typeset by AMS-TEX1



2 DETERMINANTS OF ZETA MATRICESTwo elements x and y are omparable if x � y or y � x. Otherwise they areinomparable. We write x < y to mean x � y and x 6= y.De�nition. Let n 2 N . Consider the poset Pn of subsets of [n℄ under the inlusionrelation. This poset is alled a boolean algebra of rank n. In [S1℄ it is denoted by2[n℄.The zeta funtion � of a poset P is de�ned by �(x; y) = 1 for all x � y in P .The zeta funtion belongs to the inidene algebra I(P ) of P [S1℄. If P is a loally�nite poset (i.e. every interval in P is �nite), the zeta funtion � is invertible inthe algebra I(P ). Its inverse is alled the M�obius funtion of P and is denoted by�. Note that one an de�ne � indutively by�(x; x) = 1, for all x 2 P;�(x; y) = � Xx�z<y �(x; z), for all x < y in P .For the remainder of the artile, P will be a poset with n elements and thepartial order denoted by �. We hoose a labelling x1; x2; : : : ; xn of the elements ofP suh that xi < xj =) i < j.De�nition. The zeta matrix ZP of a poset P is de�ned as the n� n matrix withentries (ZP )ij = � 1 if xi � xj0 otherwise = � �(xi; xj) if xi � xj0 otherwiseObserve that, with the hosen labelling, the zeta matrix is unipotent uppertriangular. Its non-zero entries are the values of the zeta funtion.We de�ne the matrix ZP by ZP = ZP+ZtP . In Setion x2 we give a ombinatorialinterpretation of the determinant of ZP . The main theorem of the paper evaluatesthe determinant of Zn := ZPn when Pn is the boolean algebra of rank n. Morespei�ally, in Setion x3, we prove the following reursive formula on n.Main Theorem. If n � 3 is odd, then det(Zn) = 0. If n is even, thendet(Zn) = 2�n ;where �2 = 2, and �n = 4�n�2 � 2 for n � 4.Consider also the matrix MP de�ned by MP = MP +M tP , where MP = Z�1P .The non-zero entries of MP are the values of the M�obius funtion. We refer to MPas the M�obius matrix of the poset P . We have the following theorem.



DETERMINANTS OF ZETA MATRICES 3Theorem 1. det(MP ) = det(ZP ).Proof. The theorem is a diret onsequene of the following lemma. �Lemma 1. Let U be an n � n matrix suh that det(U) = 1 and let V = U�1.Then, det(U + U t) = det(V + V t).Proof. We haveV t + V = (U�1)t + U�1 = (U�1)tUU�1 + (U t)�1U tU�1 = (U�1)t[U + U t℄U�1:Thus det(V + V t) = det((U�1)t) det(U + U t) det(U�1) and sine det(U) = 1, wehave det(V + V t) = det(U + U t). �The �rst author would like to thank Steve Fisk for suggesting the reursion ofthe Main Theorem. The Theorem was onjetured by Steve Fisk in an unpublishedmanusript on orthogonal polynomials on posets.x2. Combinatorial interpretation of det(ZP )In this setion, we disuss a ombinatorial interpretation of det(ZP ), given interms of the adjaeny matries of omparability graphs. Spei�ally, onsider aposet P as in the previous setion with jP j = n. The matrix YP = ZP�In, in whihthe diagonal entries of ZP are replaed by 0, an be interpreted as the adjaenymatrix of a direted graph (digraph) GP assoiated to the strit order relation x < yin P . The verties of GP are the elements of P , and there is a direted edge from xto y if and only if x < y. Elsewhere in the literature GP is alled the omparabilitygraph of the poset P . Similarly, the matrix YP = YP + Y tP is the adjaeny matrixof the direted graph DP in whih there are edges in both diretions between eahpair of distint omparable elements x; y 2 P . Then we haveZP = ZP + ZtP = YP + Y tP + 2In = YP + 2In;and det(ZP ) = det(YP + 2In) = �(�2) where �(t) is the harateristi polynomial�(t) = det(YP � tIn) of the matrix YP . We will also all this the harateristipolynomial of the graph DP . The oeÆients of this harateristi polynomial areexpliitly related to the number of olletions of disjoint direted yles in the graphDP . For further details we refer the interested reader to [C℄.x3. The Boolean algebra aseLet [n℄ = f1; 2; : : : ; ng and onsider the poset Pn = 2[n℄ of subsets of [n℄ underthe inlusion relation. Let Zn be the matrix de�ned in x1. The main result of thepaper is the following theorem.



4 DETERMINANTS OF ZETA MATRICESTheorem 2. If n � 3 is odd, then det(Zn) = 0. If n is even, thendet(Zn) = 2�n ;where �2 = 2, and �n = 4�n�2 � 2 for n � 4.The proof of the theorem will rely on several lemmas. First, we identify apartiularly useful labelling of Pn = 2[n℄ for our purposes, and we onsider onlythis labelling for the remainder of the paper. Eah subset A 2 Pn will be enodedas a binary vetor v(A) of length n:v(A) = (vn; vn�1; : : : ; v1)where vi = � 1 if i 2 A;0 if not.For example, in P2, v(;) = 00, v(f1g) = 01, v(f2g) = 10 and v(f1; 2g) = 11.Our labelling of Pn indues the usual numerial ordering when we interpret v(A)as the binary expansion of an integer m, with 0 � m � 2n � 1.Using this labelling yields an interesting reursive struture in the matries Zn.Lemma 2. The matries Zn and Zn have the following properties.(1) The entries of Zn above the diagonal are the �rst 2n rows in the Pasaltriangle modulo 2.(2) For n � 2, Zn and Zn have blok deompositions:Zn = �Zn�1 Zn�10 Zn�1 � and Zn = � Zn�1 Zn�1Ztn�1 Zn�1 � :(This statement also holds with n = 1 if we take Z0 = 2, Z0 = 1.)(3) The Zn matrix sequene an be generated by a reursive proedure as follows.Given Zn�1, to form Zn we replae eah entry 1 by a 2� 2 blok � 1 10 1�and eah entry 0 by a 2 � 2 zero matrix. From part (2), we get a similarreursive proedure for the Zn sequene.Proof. These properties follow diretly from the de�nition of the matries Zn andZn and the properties of the preferred labelling on Pn. �To evaluate the determinant det(Zn), we follow the general advie of [K℄ andintrodue parameters in the matrix entries. Spei�ally, we onsider the matrix:Zn(x; y) = xZn + yZtn = �xZn�1 + yZtn�1 xZn�1yZtn�1 xZn�1 + yZtn�1 �



DETERMINANTS OF ZETA MATRICES 5Using the Maple omputer algebra system, the determinants of the �rst few of thesematries are found to be:
(4) n det(Zn(x; y))1 x2 + xy + y22 (x+ y)2(x2 � xy + y2)3 (x� y)2(x2 + xy + y2)34 (x+ y)6(x2 � xy + y2)55 (x� y)10(x2 + xy + y2)11An interesting reurrene explains the patterns evident in these examples.Lemma 3. The determinants of the Zn(x; y) matries are related by the followingreurrene: det(Zn+2(x; y)) = (det(Zn(x; y))2 det(Zn+1(x;�y)):(Note that the right side involves both Zn+1 and Zn and that y is negated in theseond fator.)Proof. We use part (2) of Lemma 2 twie to form the following blok deompo-sition of Zn+2(x; y):Zn+2(x; y) = 0B�xZn + yZtn xZn xZn xZnyZtn xZn + yZtn 0 xZnyZtn 0 xZn + yZtn xZnyZtn yZtn yZtn xZn + yZtn1CA(where eah entry is a blok of size 2n � 2n). To evaluate the determinant, weperform blok-wise row and olumn operations. To simplify the notation, we writeZ = Zn First subtrat row 4 from eah of the �rst three rows to obtain:0B� xZ xZ � yZt xZ � yZt �yZt0 xZ �yZt �yZt0 �yZt xZ �yZtyZt yZt yZt xZ + yZt1CA :Subtrat olumn 1 from eah of the olumns 2,3,4 to obtain:0B� xZ �yZt �yZt �xZ � yZt0 xZ �yZt �yZt0 �yZt xZ �yZtyZt 0 0 xZ 1CA :Next, subtrat olumn 2 from olumn 4:0B� xZ �yZt �yZt �xZ0 xZ �yZt �xZ � yZt0 �yZt xZ 0yZt 0 0 xZ 1CA :



6 DETERMINANTS OF ZETA MATRICESAdd olumn 1 to olumn 4, then add row 4 in the resulting matrix to row 2:Z0 = 0B� xZ �yZt �yZt 0yZt xZ �yZt 00 �yZt xZ 0yZt 0 0 xZ + yZt1CA :Expanding along the last olumn we obtain(5) det(Zn+2(x; y)) = det(Z0) = det(xZ + yZt) det0� xZ �yZt �yZtyZt xZ �yZt0 �yZt xZ 1A :The �rst fator on the right of (5) is det(Zn(x; y)). Continuing with the 3 � 3matrix, subtrat olumn 3 from olumn 2:0� xZ 0 �yZtyZt xZ + yZt �yZt0 �xZ � yZt xZ 1A ;then add row 3 to row 2:0� xZ 0 �yZtyZt 0 xZ � yZt0 �xZ � yZt xZ 1A :Expanding along olumn 2, we havedet(Zn+2(x; y)) = det(Zn(x; y))2 det� xZ �yZtyZt xZ � yZt �= det(Zn(x; y))2 det�xZ � yZt �yZtxZ xZ � yZt�= det(Zn(x; y))2 det(Zn+1(x;�y));as laimed. For the last equality, we perform row and olumn interhanges to putthe �nal matrix shown into the form:�xZ � yZt xZ�yZt xZ � yZt�required for Zn+1(x;�y). �From the initial ases omputed with Maple in (4) and the reurrene fromLemma 3, we see that there are nonnegative integers �n; �n suh that(6) det(Zn(x; y)) = (x+ (�1)ny)�n(x2 � (�1)nxy + y2)�n :Moreover, the reurrene from Lemma 3 implies that(7) � �n+2 = 2�n + �n+1;�n+2 = 2�n + �n+1:We also have the following fat that is evident from (4):



DETERMINANTS OF ZETA MATRICES 7Lemma 4. For all n � 1, �n = �n + (�1)n+1.Proof. This follows by indution. The base ases ome from the Maple om-putations in (4) above: �1 = 0; �1 = 1, and �2 = 2; �2 = 1. For the indutionstep, assume that the laim of the lemma has been proved for all ` � k + 1. Thensubtrating the two reurrenes from (7) shows that�k+2��k+2 = 2(�k��k)+�k+1��k+1 = 2(�1)k+1+(�1)k+2 = (�1)k+1 = (�1)k+3: �Proof of Theorem 2: To determine the determinant of the original Zn = Zn(1; 1),we simply substitute x = y = 1 in (6). The fators of x� y show immediately thatdet(Zn) = 0 if n is odd. Moreover, when n is even we have det(Zn) = 2�n . We solvethe �rst reurrene in (7) for �n by the standard method for seond order linearreurrenes with onstant oeÆients. The harateristi equation is r2�r�2 = 0,whose roots are r = 2;�1. Hene �n = 1(2)n + 2(�1)n for some onstants 1; 2.The initial onditions �1 = 0; �2 = 2 show that 1 = 1=3; 2 = 2=3. Hene:�n = 13(2)n + 23(�1)n:Hene if n, and therefore also n+ 2, are even, we have�n+2 = 13(2)n+2 + 23 = 4�13(2)n + 23�� 2 = 4�n � 2: �Corollary 1. If n is even, thendet(Zn) = 2 2n+23 :Referenes[C℄ D. Cvetkovi�, M. Doob, H. Sahs, Spetra of Graphs{Theory and Appliations, 3rd Revisedand Enlarged Edition, J.A. Barth Verlag, Heidelberg, Leipzig, 1995..[K℄ C. Krattenthaler, Advaned Determinant Calulus, S�em. Lothar. Combin. 42 (1999).[Sa℄ B.E. Sagan, Why the Charateristi Polynomial Fators, Bull. AMS 36, no. 2 (1999), 113-133.[S1℄ R. Stanley, Enumerative Combinatoris, vol. 1, Cambridge University Press, Cambridge,1997.Department of Mathematis and Computer Siene, College of the Holy Cross,Worester, MA 01610E-mail address: (ballant,sfrehet,little)�maths.holyross.edu


