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ABSTRACT. We consider the matrix 3p = Zp + Z%, where the entries of Zp are the
values of the zeta function of the finite poset P. We give a combinatorial interpreta-
tion of the determinant of 3p and establish a recursive formula for this determinant
in the case in which P is a boolean algebra.

§1. INTRODUCTION

The theory of partially ordered sets (posets) plays an important role in enu-
merative combinatorics and beyond. For example, the Mobius inversion formula
for posets generalizes several fundamental theorems including the number-theoretic
Mobius inversion theorem. For a detailed review of posets and Mobius inversion we
refer the reader to [S1], chapter 3, and [Sa]. Below we provide a short exposition

of the basic facts on the subject following [S1].

A partially ordered set (poset) P is a set which, by abuse of notation, we also call
P together with a binary relation, called a partial order and denoted <, satisfying:

(1) z <z for all z € P (reflexivity).
(2) If x <y and y < z, then z = y (antisymmetry).
(3) If <y and y < z, then = < z (transitivity).
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Two elements x and y are comparable if x < y or y < x. Otherwise they are
incomparable. We write x < y to mean x <y and = # y.

Definition. Let n € N. Consider the poset P, of subsets of [n] under the inclusion
relation. This poset is called a boolean algebra of rank n. In [S1] it is denoted by
2Mnl,

The zeta function ¢ of a poset P is defined by ((z,y) = 1 for all x < y in P.
The zeta function belongs to the incidence algebra I(P) of P [S1]. If P is a locally
finite poset (i.e. every interval in P is finite), the zeta function ( is invertible in
the algebra I(P). Its inverse is called the Mdbius function of P and is denoted by
u. Note that one can define p inductively by

plx,z) =1, for all z € P,

p(zr,y) = — Z p(z, z), for all z < y in P.
r<z<ly

For the remainder of the article, P will be a poset with n elements and the
partial order denoted by <. We choose a labelling x1, zs, ... ,x, of the elements of
P such that x; < z; =i < j.

Definition. The zeta matriz Zp of a poset P is defined as the n X n matrix with

entries ) )
1 ifx; <, { (i, z;) fw; <uxj

(Zp)ij = { o=

0 otherwise 0 otherwise

Observe that, with the chosen labelling, the zeta matrix is unipotent upper
triangular. Its non-zero entries are the values of the zeta function.

We define the matrix 3p by 3p = Zp+Z%. In Section §2 we give a combinatorial
interpretation of the determinant of 3p. The main theorem of the paper evaluates
the determinant of 3, := 3p  when P, is the boolean algebra of rank n. More
specifically, in Section §3, we prove the following recursive formula on n.

Main Theorem. If n > 3 is odd, then det(3,) = 0. If n is even, then
det(3,) = 29",

where ag = 2, and o, = 4a,_o — 2 forn > 4.

Consider also the matrix 9 p defined by Mp = Mp + M}é, where Mp = Z;l.
The non-zero entries of Mp are the values of the Mobius function. We refer to Mp
as the Mobius matriz of the poset P. We have the following theorem.
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Theorem 1. det(9Mp) = det(3p).

PROOF. The theorem is a direct consequence of the following lemma. [J

Lemma 1. Let U be an n x n matriz such that det(U) = 1 and let V = U1,
Then, det(U + U?) = det(V + V).

ProOF. We have
ViV =U Y +U =0 HUUt+ W) Ut = (U )U+UUT

Thus det(V + V?) = det((U~1)?) det(U + U?) det(U~") and since det(U) = 1, we
have det(V + V) =det(U + U*). O

The first author would like to thank Steve Fisk for suggesting the recursion of
the Main Theorem. The Theorem was conjectured by Steve Fisk in an unpublished
manuscript on orthogonal polynomials on posets.

§2. COMBINATORIAL INTERPRETATION OF det(3p)

In this section, we discuss a combinatorial interpretation of det(3p), given in
terms of the adjacency matrices of comparability graphs. Specifically, consider a
poset, P as in the previous section with |P| = n. The matrix Yp = Zp — I,,, in which
the diagonal entries of Zp are replaced by 0, can be interpreted as the adjacency
matrix of a directed graph (digraph) G p associated to the strict order relation z < y
in P. The vertices of Gp are the elements of P, and there is a directed edge from x
to y if and only if x < y. Elsewhere in the literature G p is called the comparability
graph of the poset P. Similarly, the matrix Yp = Yp + Y}, is the adjacency matrix
of the directed graph Dp in which there are edges in both directions between each

pair of distinct comparable elements =,y € P. Then we have
3p="2p+Zp=Yp+Yp+2L,=Yp + 2L,

and det(3p) = det(YPp + 21,,) = x(—2) where x(t) is the characteristic polynomial
x(t) = det(YPp — tI,,) of the matrix PYp. We will also call this the characteristic
polynomial of the graph Dp. The coefficients of this characteristic polynomial are
explicitly related to the number of collections of disjoint directed cycles in the graph
Dp. For further details we refer the interested reader to [C].

§3. THE BOOLEAN ALGEBRA CASE

Let [n] = {1,2,...,n} and consider the poset P, = 2[" of subsets of [n] under
the inclusion relation. Let 3,, be the matrix defined in §1. The main result of the
paper is the following theorem.
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Theorem 2. If n > 3 is odd, then det(3,) = 0. If n is even, then
det(3,) = 29",

where ag = 2, and o, = da,_o — 2 forn > 4.

The proof of the theorem will rely on several lemmas. First, we identify a
particularly useful labelling of P, = 2[7] for our purposes, and we consider only
this labelling for the remainder of the paper. Each subset A € P, will be encoded
as a binary vector v(A) of length n:

v(A) = (Vn, Vp—1,--. ,01)

where

[ 1 ifieA,
"o ifnot.
For example, in P, v(0) = 00, v({1}) = 01, v({2}) = 10 and v({1,2}) = 11.
Our labelling of P, induces the usual numerical ordering when we interpret v(A)

as the binary expansion of an integer m, with 0 < m < 2" — 1.
Using this labelling yields an interesting recursive structure in the matrices 3,,.

Lemma 2. The matrices Z,, and 3, have the following properties.

(1) The entries of Z, above the diagonal are the first 2™ rows in the Pascal

triangle modulo 2.
(2) Forn > 2, Z, and 3, have block decompositions:

anl anl 31’171 anl
L = and = ’ ’ .
" ( 0 Zn—l > 3n < Z;;_l 3n—1
(This statement also holds with n = 1 if we take 30 =2, Zy =1.)
(3) The Z,, matriz sequence can be generated by a recursive procedure as follows.

Given Zy,_1, to form Z, we replace each entry 1 by a 2 x 2 block <(1) 1)

and each entry 0 by a 2 X 2 zero matriz. From part (2), we get a similar
recursive procedure for the 3, sequence.

PROOF. These properties follow directly from the definition of the matrices Z,, and
3, and the properties of the preferred labelling on P,. [

To evaluate the determinant det(3,,), we follow the general advice of [K] and
introduce parameters in the matrix entries. Specifically, we consider the matrix:

— t_ (tZna T Yz, TZp—1
3n(e:9) = n 4 n = < Yz, Tp_1 +yZL_,
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Using the Maple computer algebra system, the determinants of the first few of these
matrices are found to be:

S

det(3,(z,y))

x? + Ty + y2
(z+y)*(z® — zy +y?)
(z —y)?(z® + 2y + y°)°
(z+y)°(z? — 2y + y°)°

(.’L‘ _ y)IO(xZ _|_ Ty + y2)11

U W N =

An interesting recurrence explains the patterns evident in these examples.

Lemma 3. The determinants of the 3, (x,y) matrices are related by the following
recurrence:

det(3nsa(r,9)) = (det (3n(2,y))> det(3ns1 (2, ).

(Note that the right side involves both 3,11 and 3, and that y is negated in the
second factor.)

PrROOF. We use part (2) of Lemma 2 twice to form the following block decompo-
sition of 3,42(z,y):

vy +yZt LA AN LA

_ Yz xZy + Y2zt 0 xZy,

371,—{—2(337 U) - ertz 0 JSZn + UZ;; LEZn
yZzh yZ yZzh 70 +yZ),

(where each entry is a block of size 2" x 2™). To evaluate the determinant, we
perform block-wise row and column operations. To simplify the notation, we write
Z = 7, First subtract row 4 from each of the first three rows to obtain:

xZ xZ —yit xZ —yZt —yzt

0 A —yZt —yZt

0 —yZt A —yZt
yZt yZt yZt xZ + yZt

Subtract column 1 from each of the columns 2,3,4 to obtain:

xZ —yZt —yZt —aZ —yZt

0 xZ  —yZt —yzt
0 —yzt axZ —yZt
yZ* 0 0 A
Next, subtract column 2 from column 4:
xZ —yZt —yzt —x/
0 xZ -yt —aZ —yZt
0 —yZt aZ 0

yZt 0 0 xZ
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Add column 1 to column 4, then add row 4 in the resulting matrix to row 2:

xZ —yZzt —yzt 0
3 — yzt a7  —yZ? 0
0 —yzZt xZ 0

yZt 0 0 aZ+yzt

Expanding along the last column we obtain

xZ —yZt —yzt
(5)  det(3ni2(z,y)) = det(3) =det(zZ + yZ) det | yZt x72 —yZ?
0 —yZt zZ

The first factor on the right of (5) is det(3,(z,y)). Continuing with the 3 x 3
matrix, subtract column 3 from column 2:

rZ 0 —yZt
th x/ + th —th
0 —aZ—yZt a7
then add row 3 to row 2:

xZ 0 —yZt
yZt 0 v —yZt
0 —aZ—yZzt x/

Expanding along column 2, we have

o 2 ZUZ —ny
et(Busalo ) = der(3uCr)aes (1707 )

_ 20 (P -2t —yZ

— det(3n(2,9))? det(3ns1 (7, ).

as claimed. For the last equality, we perform row and column interchanges to put
the final matrix shown into the form:

xZ —yZt A
—yZt xZ —yZt

required for 3,1(z,—y). O

From the initial cases computed with Maple in (4) and the recurrence from
Lemma 3, we see that there are nonnegative integers «,,, 3, such that

(6) det(3n(2,9)) = (z + (=1)"y)*" («? — (=1)"zy + y*) .
Moreover, the recurrence from Lemma 3 implies that

(7)

{ Ony2 = 200, + Oni1,
6n+2 - 2/871 + /Bn—i—l-
We also have the following fact that is evident from (4):
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Lemma 4. For alln>1, a, = B, + (=1)"*1.

Proor. This follows by induction. The base cases come from the Maple com-
putations in (4) above: a3 = 0,61 = 1, and ay = 2,85 = 1. For the induction
step, assume that the claim of the lemma has been proved for all / < k + 1. Then
subtracting the two recurrences from (7) shows that

2Bt = 2(ak—Br)+aks1—Bryr = 2(—1)F T H(—1)F? = (—1)FFT = (—1)F+3,

Proof of Theorem 2: To determine the determinant of the original 3,, = 3,,(1, 1),
we simply substitute z = y = 1 in (6). The factors of z — y show immediately that
det(3,) = 0if n is odd. Moreover, when n is even we have det(3,,) = 2%". We solve
the first recurrence in (7) for a,, by the standard method for second order linear
recurrences with constant coefficients. The characteristic equation is 72 —r —2 = 0,
whose roots are r = 2, —1. Hence a,, = ¢1(2)™ + co(—1)™ for some constants ¢y, ca.
The initial conditions a; = 0, @y = 2 show that ¢; = 1/3,¢9 = 2/3. Hence:

Ay, —

Hence if n, and therefore also n + 2, are even, we have

1 2 1 2
Q2 = 3(2)n+2 t3= 4 <§(2)n + §> -2=4a, —2. [

Corollary 1. Ifn is even, then

2" 42
det(3,) =2 3
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