Group Discussion # 3:

Changing Bases – How does this affect the Matrix for a Linear Transformation?

Solutions due: Wednesday, April 7th, at the *beginning* of class One write-up per group please, **following the same guidelines as the homework.**

Background:

• On Wednesday, we worked with the following problem: Given a vector space V with two different choices of basis, α and α' , and given a vector $\vec{v} \in V$,

how does $[\vec{v}]_{\alpha'}$, the coordinate vector of \vec{v} with respect to the basis α' , relate to $[\vec{v}]_{\alpha}$, the coordinate vector of \vec{v} with respect to the basis α ?

Our solution was the following:

Proposition 1. With the hypotheses as above,

$$[\vec{v}]_{\alpha'} = [I]_{\alpha}^{\alpha'} [\vec{v}]_{\alpha},$$

where $I: V \to V$ is the identity transformation.

• We refer to $[I]^{\alpha'}_{\alpha}$ as a change of basis matrix. When the second basis $\alpha' = \varepsilon$, the standard basis, we saw that the entries of $[I]^{\varepsilon}_{\alpha}$ are just the coordinates of the basis vectors from α , put in as the columns. That is, we have the following:

Proposition 2. With the hypotheses as above,

$$[I]^arepsilon_lpha = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix},$$

where the entries in the jth column are the coordinates of the jth basis vector $\vec{v_j}$ in α , with respect to ε ; that is, where $\vec{v_j} = (a_{1j}, a_{2j}, \dots, a_{nj})$. for $j = 1, \dots, n$.

• Today, your job is to work out the related problem: Given a vector space V with two different choices of basis, α and α' , and given a linear transformation $T: V \to V$,

how does $[T]_{\alpha'}^{\alpha'}$, the matrix of T with respect to the basis α' , relate to $[T]_{\alpha}^{\alpha}$, the matrix of T with respect to the basis α ?

Throughout, we will use the following set-up:

- $T: V \to V$ is a linear transformation,
- V is a finite-dimensional vector space, and
- $\alpha = \{\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}\}$ and $\alpha' = \{\vec{v_1'}, \vec{v_2'}, \dots, \vec{v_n'}\}$ are two different bases for V.
- $\varepsilon = \{\vec{e_1}, \vec{e_2}, \dots, \vec{e_n}\}$ is the standard basis, in the case where $V = \mathbb{R}^n$.

We will also need the following proposition regarding the *composition of two linear trans*formations:

Proposition 3. Let $S: V \to V$ and $T: V \to V$ be linear transformations, where V is a finite-dimensional vector space. Let δ, β , and γ be any choices of bases for V. Then

$$[TS]^{\gamma}_{\delta} = [T]^{\gamma}_{\beta} [S]^{\beta}_{\delta}.$$

Discussion Questions:

- 1. Converting the matrix $[T]^{\alpha}_{\alpha}$ to the matrix $[T]^{\alpha'}_{\alpha'}$ will require using change of basis matrices. Based on Proposition 3, determine which change of basis matrices to apply on which sides of $[T]^{\alpha}_{\alpha}$, to obtain $[T]^{\alpha'}_{\alpha'}$. Call your resulting equation Proposition 4.
- 2. The matrix $[I]^{\alpha'}_{\alpha}$ is explicitly related to the matrix $[I]^{\alpha}_{\alpha'}$. Use Proposition 3 to prove that these two matrices are in fact inverses of each other.
- 3. Suppose now that $V = \mathbb{R}^3$, and $\alpha = \{(1,0,1), (0,1,1), (1,1,0)\}$, and $\alpha' = \varepsilon$. Suppose that $T : \mathbb{R}^3 \to \mathbb{R}^3$ is the linear transformation defined by

$$[T]^{arepsilon}_{arepsilon} = egin{bmatrix} 1 & 0 & 1 \ 2 & 2 & 2 \ 3 & 0 & 0 \end{bmatrix}.$$

Compute the matrix $[T]^{\alpha}_{\alpha}$, by

- (a) determining the change of basis matrices explicitly, using Proposition 2 and your answer from question 2. You will need to apply the *Gauss-Jordan method* for finding the inverse of a matrix.
- (b) computing the matrix product given in your equation labelled Proposition 4.