HECKE STRUCTURE OF SPACES OF
HALF-INTEGRAL WEIGHT CUSP FORMS

SHARON M. FRECHETTE

ABSTRACT. We investigate the connection between integral weight
and half-integral weight modular forms. Building on results of
Ueda [14], we obtain structure theorems for spaces of half-integral
weight cusp forms Sy /5 (4N, x) where k and N are odd nonnegative
integers with £ > 3, and yx is an even quadratic Dirichlet character
modulo 4N. We give complete results in the case where NV is a
power of a single prime, and partial results in the more general
case. Using these structure results, we give a classical reformula-
tion of the representation-theoretic conditions given by Flicker [5]
and Waldspurger [17] in results regarding the Shimura correspon-
dence. Our version characterizes, in classical terms, the largest
possible image of the Shimura lift given our restrictions on IV and
X, by giving conditions under which a newform has an equiva-
lent cusp form in Sy /5 (4N, x). We give examples (computed using
tables of Cremona [4]) of newforms which have no equivalent half-
integral weight cusp forms for any such N and y. In addition,
we compare our structure results to Ueda’s [14] decompositions of
the Kohnen subspace, illustrating more precisely how the Kohnen
subspace sits inside the full space of cusp forms.

1. INTRODUCTION

A vital part of the theory of integral weight modular forms is the
study of simultaneous Hecke eigenforms, in particular newforms. The
classical “multiplicity-one” result says that a newform is explicitly de-
termined up to constant multiple by its eigenvalues for almost all the
Hecke operators Ti(p), p a prime, k a positive integer. If we attempt
to define “half-integral weight newforms” using a definition analogous
to that for integral weight, the theory breaks down rapidly, the crucial
point being the lack of a multiplicity-one result. There are however
significant connections between integral weight Hecke eigenforms and
half-integral weight Hecke eigenforms, most notably the Shimura corre-
spondence [12]. This correspondence maps Hecke eigenforms to Hecke
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eigenforms, which suggests that our knowledge of the integral weight
structure can be “transported” to knowledge about half-integral weight
forms. Through a representation-theoretic approach, Shintani [13] pro-
vides a mapping which is an adjoint to the Shimura lift and also pre-
serves Hecke eigenforms. Unfortunately, the image of the Shintani map
may be trivial, so it does not necessarily afford a practical method of
transporting the Hecke structure back.

A promising alternative is to use trace identities to give decompo-
sitions of the spaces of cusp forms S/, (4N, x) which illuminate their
Hecke structure. These decompositions take the form of isomorphisms
between Sy /5(4N, x) and direct sums of spaces of integral weight new-
forms; the isomorphisms are as modules for the respective algebras
generated by the Hecke operators acting on half-integral weight and in-
tegral weight cusp forms. Theorem 3.1 gives such decompositions when
N is the power of a single odd prime and x is even and quadratic. In
Section 4 we compare these decompositions to Ueda’s decompositions
[14] of the Kohnen subspace, showing more precisely how this subspace
sits inside the full space of cusp forms.

While Ueda’s trace identity holds for levels 4 N where N is any odd
positive integer, transforming it into an isomorphism for Sy /2(4N, x)
becomes increasingly complex as the number of odd prime divisors of
N increases. In the case of more general levels, partial Hecke structure
results are sufficient to prove that subspaces of newforms satisfying
certain conditions are missing from the decompositions of Sy /2(4N, x)
for all N and y as above. Therefore all forms in these subspaces are not
in the image of the Shimura lift [12] for any such N and x. These results
completely characterize the largest possible image of the Shimura lift
from Sy /2(4N, x) for N and x as above, thus providing conditions under
which this map will fail to be onto.

Specifically, Theorem 5.2 gives partial decompositions of Sk/2(4]\//f, X)
when k£ > 5 and the subspace V3/5(4M, x) C Ss/2(4M, x) when k = 3,

for odd positive integers M satisfying certain restrictions. In Theorem
5.6 and Corollary 5.7, we show how introducing additional prime fac-
tors into the level affects the nature of the decompositions; essentially,
shifting from the decomposition of Sy /2 (4N, x) to that of Sy /»(4Ng, x)
where M | N and ¢ /M does not result in the appearance of any
additional newforms at levels dividing 2M. Thus the nature of the
decompositions with respect to any prime p | M is unchanged.

For ¢t =0 or 1 and M an odd positive integer, we consider the sub-
space Sy (2'M) C SY | (2'M) defined in [15] which excludes all forms
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in S)_|(2'M) that are twists of newforms of lower levels. As a conse-
quence of Theorem 5.2 and Corollary 5.7, Corollary 5.1 characterizes
those newforms F € S (2" M) appearing in the image of the Shimura
lift from Sy, /2(4N, x) for some N and x as above. This characterization
is given in terms of the congruence modulo 4 of the primes p divid-
ing M, the exponents to which these primes occur, and the subspace
of S ,(2'M) to which F belongs. Corollary 5.1 provides a classical
reformulation of representation-theoretic conditions given by Flicker
[5] and Waldspurger [17] in theorems determining when a newform
F € Sp (2'M) has equivalent half-integral weight cusp forms. These
results are only given for F' € S} ,(2'M); some discussion of how one

may proceed in investigating the case F' € S (2! M) is also given.

In Section 6 we provide examples of nonzero newforms which are not
in the image of the Shimura lift for any Sj/»(4/N, x) as above. These
examples are produced using tables of Cremona [4], turning to the
case k = 3. We compute lower bounds for the dimension of certain
subspaces of Sy(2!M) for particular values of ¢t and M.

Many interesting questions have been raised by these results, most
notably questions about the role which the Atkin-Lehner involution
W, plays in determining whether a newform F' € S [(2'M) is in the
image of the Shimura lift at a given level. In the concluding remarks
we discuss this and other related questions.

This paper contains results of my thesis work at Dartmouth College.
[ would like to express my deep gratitude to my thesis advisor, Thomas
Shemanske, for all his guidance and encouragement. 1 would also like
to thank John Rhodes for several insightful conversations.

2. PRELIMINARIES

2.1. Notation and Terminology. Let SLy(Z) = {(®}) : a,b,c,d €
Z and

ad — bc = 1}, and for each positive integer N consider the congruence
subgroup T'o(N) = {(2%) € SLy(Z) : ¢ = 0 (mod N)}. Let x be
a Dirichlet character modulo N. Then y = HmN Xp Where x, is a

(V)

Dirichlet character modulo p° @ We will be concerned with x, =

(%), the Legendre symbol modulo an odd prime p.

Let £ > 3 be an odd positive integer. Denote the space of all cusp
forms of weight k£ — 1, level N and character x by Sy_1(N, x), or simply
Sk_1(N) if the character is trivial. For each positive integer n relatively
prime to N, we consider one Hecke operator Ty (n) acting on Sg_1(N, x).
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For each positive integer @ with (Q,N/Q) = 1, let Wg denote the
Atkin-Lehner involution, and abbreviate W oragn as Wy. Let R, denote
the twisting operator with respect to the Dirichlet character y, and
write R, = R, if x = <]§> Finally, let B; denote the shift operator

for a positive integer d. Definitions and details can be found in [8] or
[15]. We will often need the commuting relationships between these
operators, given in the following:

Proposition 2.1. [1], [2], [15] For N and n positive integers and k > 1

an odd positive integer, let 1 be a quadratic character of conductor fy,
and let QQ be a positive divisor of N with (Q,N/Q) = 1. For any
F € Sk(N), the following hold:

(1) If (n, Nfy) =1, then F' | Ry | Ti,(n) = ¢(n)F | Ty(n) | Ry.

(2) If (n,N) =1, then F | Ty.(n) | Wg = F | Wg | T.(n).

(3) If (Q, fy) =1, then F' | Ry | Wo = ¢(n)F | Wq | Ry.

(4) If Q" is another divisor of N such that (Q',QN/Q") = 1, then
F{Wo |Wo=F|Wgq=F|[Wq|Wq.

Moreover, if N = p” M, with p an odd prime, M a positive integer with

p fM, and v =0 or 1, then
(5) F| R, | Wy = (%)F IR,

We will also have need of several subspaces of S,_1(N, x): The sub-
space S, (N, x) generated by the oldforms, its orthogonal complement
the subspace S (N, x) generated by the newforms, and the image of
this space under the action of R, denoted Sy (N, x) | R,. For details,
see [8] or [15]. We will also use the following corollary to the strong
multiplicity-one result:

Proposition 2.2. Let N be a positive integer, let d be a positive di-
visor of N, and let 6(N/d) denote the number of positive divisors of
an N/d. Then we have the following isomorphism as modules for the
Hecke algebra:

Sk(N) = @ §(N/d)S](d)

dIN
Proof. This follows from Lemma 15 and Theorem 5 in [1]. O

In the half-integral weight setting, denote the space of all cusp forms
of weight k/2, level 4N and character x by Si/2(4N, x). For each pos-
itive integer n relatively prime to 2N, we consider one Hecke operator
Ti/2(n?) acting on Sy2(4N, x). For details, see [15].
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In the case k = 3, we must restrict attention to those half-integral
weight, cusp forms which correspond to integral weight cusp forms un-
der the Shimura correspondence. We have the following construction:
Let Us/2(4N, x) be the subspace of Ss/2(4N,x) which is spanned by
the functions hy(tz) where hy(z) = S2°°_ ¢ (m)me?™™’% ) is a prim-
itive character modulo a positive integer r with ¢(—1) = —1, and ¢ is

an integer, such that the conditions ¢r? | N and y = (’T’ ) are sat-

isfied. Let V3/2(4N, x) be the orthogonal complement of Us/s(4N, x)
in S3/5(4N, x) with respect to the Petersson inner product. Under the
Shimura correspondence, the forms in Uy /5(4N, x) correspond to Eisen-

stein series and the forms in Vj/5(4N, x) correspond to cusp forms (see
[14]). Therefore when k = 3, we consider only V3,5(4N, x).

The decompositions given in this paper are obtained from trace iden-
tities. Let
tr(T | V') denote the trace of an operator T on a vector space V. If
we have subspaces Spay C Sk/2(4N, x) and Sypoe € Sk—1(2N), where
N is a positive integer and y is a quadratic Dirichlet character modulo
4N, it can be shown that

(].) TLT(fk/Q(WQ) ‘ Shalf) = tr(Tk,1(n) | S’whole) Vn with (n, 2N) =1
iff Shaip = Swhote @s modules for the algebra

generated by all the Hecke operators

See [6] for details. By explicitly calculating tr (fk/g(n2) | [Sk/2(4N, X)])
when (n,2N) = 1 and x is even and quadratic, Ueda [14] proved an
identity relating this trace to certain traces on spaces of integral weight
forms. We use this identity in proving Theorem 3.1 and Theorem 5.6
and its corollaries. To do so, we must break apart the newform spaces,
isolating a subspace S ,(N) C SP ,(N) which is closed under not
only the appropriate W and T operators but also under the twisting
operators R, for any odd prime p with p* | N. This space was defined
by Ueda, and is denoted by Sy ;(N) in [14] and by S; ,(N) in [15].
We give definitions of S} _;(NN) and its relevant subspaces, as well as
several properties which will be needed throughout.

2.2. The Subspace S} ,(N). In general, the space Sp_;(N) need not
be closed under quadratic twists. In fact, for an odd prime p with
ord,(N) = 2, taking a newform of level p?M with p fM and twisting
by R, gives us a newform of level pM or M by Theorem 6 of [1].
Moreover, Sy (p*M) | R, C Sy ,(p>M) for v = 0,1. To obtain a
subspace of Sy |(N) which is closed under quadratic twists, we must
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“split off” all forms in S)_;(N) which are quadratic twists of newforms
of lower levels.

Let (2 denote the set of all odd primes dividing N, and for each p € (2
let v, = ordy(N). Let Q = QU {2}, and write N = 2'M =[] _5p".
Put Q, = {p € Q| v, =2}, and let R4 =[], R, for any subset A of
Q. For any partition 2 = A 4+ B + C' of the set of primes occurring
with exponent 2, define an integer

N(B,C) = H p”FHp.
peEQ—(B+C) peB
Then S} (N(B,C)) | Rgic C S) (N) by repeated application of
Theorem 6 of [1]. If we take the sum of the subspaces Sy _(N(B,C)) |
Rp.c over all partitions 29 = A + B + C' where Qy # A, this will
include all forms in S)_|(N) which are quadratic twists of newforms of
lower levels. We therefore put

5134(N) = Z S,?f](N(B,C’)) | Rp.c,
Qo=A+B+C
Qa#£A

and define S |(N) to be the orthogonal complement of S? ,(N) in
S? (N) with respect to the Petersson inner product. For example, if
N = 2p?, we have

Si1(20%) = Sp_1(2p) | Ry + S1_1(2) | Ry

Proposition 2.3 (Ueda). [15] Let the notation and terminology be as
above. Then

SiaN) = D SLNB,C)) | Rpic
Note that the 2y = A summand is S} ;(N). We refer to the direct
sum of the remaining terms as Sp% (V).
With respect to each odd prime p dividing N with ord,(N) > 2, we

define four subspaces of S} ;(NN) as follows: for each choice of «,, 5, =
+1 put

SP(NY = {F € S} (N): F|W, =qa,F and F | R, | W, = 3,F | R,}
These subspaces appeared in [11], denoted by S;, Sir, Siz,, and Sy
It is easy to show that SP* [(N) = SI™(N)@® S} (N)® S (N) @
S, (N). In general, we will need to split the space S {(N) into

subspaces depending on each odd prime p | N with ord,(N) > 2. Let
Qy; denote the set of odd prime divisors of N with ord,(N) > 2.
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For any choice of a,, 5, = £1 for each p € Q. let S,(:ﬁpﬂp)pen” (N)

denote the subspace of S;_; (V) consisting of forms F' which satisfy the
relations F' | W, = a,F, and F' | R, | W, = ,F | R,. We have

n (PapBp)p 9
PN =@ S (N)

where the direct sum is taken over all possible choices for the tuple
(papBp)pen,. - Using these definitions and Proposition 2.1, we can eas-
ily prove the following facts about the behavior of these subspaces
Szfﬁﬂp(]\f) under the action of various operators as described in the
following:

Proposition 2.4. Let N be a positive integer with ord,(N) > 2 for

. e
some odd prime p. The subspaces S,fflﬂp(]\f) as defined above behave
under the action of the Hecke operators Tj,_y(n), involution W,, and
twisting operator R, in the following way:

(1) S,ffﬁﬁp(]\f) is closed under the action of Tj,_i(n) for a,, B, = £1
and (n, N) = 1.

(2) Sﬁ’iﬁp(]\f) is closed under the action of W, for oy, B, = %1, .

(3) SPFHF(N) and SE=[(N) are both closed under the action of R,,
while S;*7(N) | R, = SE=F(N) and S}~ (N) | R, = SI*,(N).

An important consequence of Proposition 2.4 is that S} (N) is
closed under the action of the appropriate Hecke operators, involutions
and twists. Moreover, we have the following:

Proposition 2.5. Let the notation and terminology be as above. Then
each summand Sp ,(N(B,C)) | Rprc of Sp*(N) is closed under the
action of W, for each odd prime p | N.

Proof. Let F € S} |(N(B,(C)) | Rgyc, so that F' = G | Rp, ¢ for some
G € Sy ((N(B,C)). First suppose p ¢ B+ C. Then p» || N(B,C),
and we have F' | W, = G | Rgic | W, = G | W, | Rgyc by (3)
of Proposition 2.1. Since G € S} |(N(B,()), we can write G as a

linear combination of some Gpq 5, € Sﬁﬁﬁp(N(B, (). Each subspace
Sﬁﬁﬂ”(N(B, C)) is closed under the action of W, by Proposition 2.4,
hence Gpa,s, | W, € SE"(N(B,C)) C Sp(N(B,C)). By linearity,
G| W, €SP (N(B,C)) C S (N(B,C)) as well, and therefore
FIW, e Si,(N(B,C)) | Rpic-

If pe B+ C, then ord,(N(B,C))=0ifpe Corlifpe B.
Put Rpic = R,Rpyc—ypy- Thus by Proposition 2.1,
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F|W,=F|Wyp,=G|R,| Rsic | Wy
-1
=GBy [ Wy [ Bpiogp) = (7)0 | By | Rpio-ip)

—1
= (?>G | Rpic = £G | Rpic==xF € SIZQI(N(BaC)) ‘ Rpic

]

2.3. Equivalent Forms. The results in Sections 5 and 6 pertain to
half-integral weight cusp forms which are equivalent to a given inte-
gral weight newform F. We say that a newform F € S} (2N, x?) is
equivalent to a cusp form f € Si2(4N, x) if f and F are both Hecke
eigenforms with corresponding eigenvalues equal for almost all primes
p. That is, f | Tj2(p®) = A\pf and F' | Tj,_1(p) = A, F' for almost all p,
where A, € C. Let Si/2(4N, x, F) denote the subspace of Sy/2(4N, x)
consisting of all forms equivalent to F'. We have the following direct
sum,

Sk/2(4N,X) = P Sk/2 (4N, x, F)
F

taken over all newforms F' of levels dividing 2/V.

3. THE DECOMPOSITIONS AT LEVEL 4p™

In this section we give explicit means of constructing decompositions
for the spaces Si/2(4p™, x) for k > 5 (resp. Vi/o(4p™, x) for k = 3). De-
compositions were also computed explicitly for levels with two distinct
odd prime divisors, and the regular structure of these decompositions
illustrates quite well what should happen in the case of general level
4N. We discuss these more general levels in the remark at the end of
this section as well as in Section 5.

Theorem 3.1. Let the notation and terminology be as above, and let
a,t, and u be integers with a > —1. For any specified m and y, we
explicitly construct an isomorphism between Sio(4p™, x) for k > 5
(resp. Vi o(4p™, x) for k = 3) and a direct sum of integral weight forms
which depends on m and x. This is an isomorphism as modules for the
Hecke algebra. The summands are (subspaces of) Sp_,(2'p") | Ra for
0<t<1and0<u<m, where A =1 orp (with Ry trivial). For
each such level and twist, consult the table to determine the subspace
and coefficient with respect to p. Then multiply each coefficient by
2 — t, and take the direct sum over all possible choices of 0 < t < 1,
0<u<m, and A=1 orp.
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Contribution at level 2tp* twisted by R4

Cases Sum over: Coefficient: Subspace:
m = =1 u=0 — x =1 — 1 S0
=2a+3 A=1 u>0 even — either x | ap,Bp = %1 [2+ap+ﬂp(%)}(a+27%) SpapBp
7 ? u > 3 odd — either x — 2a+4—u S0
” 7 u=20orl — either x — 40 + 6 —u(a +2) S0
” =p u=0orl — either x — (2+(27u)( ))(a+]) S0
m=2a+4 A=1 u>0even u=m, x=1 , = +1 Sp+Pp
” 7 7 7 X =(2) | ap,Bp = 1 1+ B:D( 7 ) spaph
” ” ” u<m  x=1 |apB=+1| (a+2-w+ap+8 () +(+ap) | sl
’ ’ ’ T x=(8) |anBe=1 | @+2-w2+ap+ 8 ()14 (14 8,(5)) | seorte
7 ? u > 3 odd — either x — 2a+5—u S0
7 7 u=0 orl — x =1 — 4a + 8 — u(a + 3) S0
” » ” — x=(2) — da +8 — u(a +2) 50
7 A=p u=0o0r1 m#2 x =1 — (2a+37u(a+1))(1+(%))+u(a+]) S° | R,
” ” ” ” x = (&) (2a +3 —u(a +2))(1 + (%))—!—u(a—!—?) SO | R,
» » » m=2 x=1 1+ (2) S0 | R,
” 7 7 7 x = (%) 1+ (1— u)(%) SY | R,

Example 3.2. By Theorem 3.1, fork > 5 and x =1 or (f), we have:

1

= Pt

t=0

Sk/2(4p”, x)

p

{s,‘zlmtp% o (34 (5))strrem e (3 (50)) st @)

o (14 (2))srtem e (1- (5))st @)

A4S, (2'9) @650 1(2) @ 2+ ()8 4(2) | Ry @201+ ()24 (21| R}

Notice that exactly one of (1 + (’71)) 18 zero according to the congru-

ence of p modulo 4. Hence ezactly one of the spaces S}
“missing” from this isomorphism. Consequently, newforms in that
space are not in the image of the Shimura lift from Sk/2(4p3,x).

be

P (2p?) will

In

Section 5, we characterize those newforms in the S™-spaces which are
in the image of the Shimura lift from Sy;2(4N, x) for some odd positive
integer N and some even quadratic Dirichlet character x modulo 4N.
Moreover, we give conditions under which a newform in an S™-space
has no such preimage.
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Proof of Theorem 3.1. The isomorphisms are obtained by manipulat-
ing the following trace identities of Ueda’s:

Theorem 3.3. (Ueda) [14] Let N be a positive integer such that 2 <
ordy(N) = p < 4 and put M = 27#N. Let x be an even quadratic
Dirichlet character modulo N and suppose that the conductor of x is
divisible by 8 if u = 4. Then for k > 5 and for all positive integers n
with (n, N) =1 we have the following relation:

tr(Tjo (n) | [Skja (N X)]) = tr(Th—1(n) | [Sh-1(N/2)])
+ Y A(n, Lo)tr (Wi, Te—1(n) | [Sk—1(2"'LoL1)])

and for k = 3 we have the following relation:

tr(fg/Q(nQ) | [Vay2(N,x)]) = tr(Tz(n) | [SQ(N/2)])+Z A(n, Lo)tr (Wi, To(n) | [S2(2"7'LoLy)])

o
where

(1) X_p, runs over all square divisors Lo of M with Ly > 1,

(2) to each Ly the corresponding Ly is given by Ly = M Hp\Lo pordp (M)
(3) and the constant A(n, Ly) is defined as follows:

A(n, Ly) = H A(p, n;ordy(Ly)/2) with

p|M
1 ifa=0
Ap,n;a) =< 1+ (%) if1<a< [7"%9)’1]

ordy(N)
2

Xp(—n) if ord,(N) is even and a =

We handle the case k£ > 5. All computations when k£ = 3 are com-
pletely analogous. We must consider x = 1 or (g), however if the

exponent m is odd, the trace identity has no dependence on Y.
Case 1: m = 0 or 1. In this case, N is square-free and the trace
identity in Theorem 3.3 becomes

tr(Tepa(n®) | [S2(AN. x)]) = tr(Tie1(n) | [Sk-1(2N)])

yielding the isomorphism Sy /5(4N, x) = S;_1(2N) by application of
(1). We then break Sj;_;(2N) into a direct sum of newform spaces
according to Proposition 2.2 in order to obtain the decomposition.
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Case 2: m > 2. The decompositions for non-square-free levels are
obtained by bootstrapping up from decompositions for lower levels. For
¢ > 1 and a > 0, define the following expressions:

Dy = tr(Tioj2(n®) | [Skp2(4p”,1)]) — tr(Tepa(n?) | [Sks2(dp™ ', x)])

Eye = tr(Tija(n?) | [Skso(4p™ (‘))]) — tr(Tepa(n®) | [Sep2(4p™ ", X)])

Fo = tr(Tiga(n) | [Sepa (497, X)]) = tr(Tiga(n) | [Skps (497, 1)])
= tr(Thya(n?) | [Sua(@p™*, (E))]) + tr(Tipa0?) | [Sea(4p™*, )

Substituting appropriately for each term using the trace identity in
Theorem 3.3 yields significant cancellation:

D, fT(Tk 1(77) | [Sk ](2]920)]) _ fr(Tk ](77) | [Skf](Qp%*])])
+tr (WyeeTh 1 (n) | [Sk-1(20™)])
Es, tT(Tk 1(n) | [Sk 1(2p20)]) — tT(Tk 1(n) | [Sk71(2p2c7])])

+ ) 2(‘Tk ]( )| [Sk ](2]920)])

Fo = t?“(qu(”) | [Skf (2 2a+3)]) a Qtr(ka](n) | [Ski]@p%”)])
+tr(Tia(n) | [Se1(20*)])

We then reduce these three expressions to ones involving traces of
only Hecke operators acting on spaces of newforms. For each T}, ;(n)-
term, this is done via Proposition 2.2. For each term involving W-
operators, we first apply the following:

Proposition 3.4 (Ueda). [15] Let A, B be finite sets consisting of
prime numbers such that AN B =0 and also let a, for p € A, and b,
for g € B be any non-negative integers. Then for a positive integer n
prime to HpeAp“P quB g%, we have the following identity:

tr(WaTy_1(n) | [Sk- Hpap Hq

pEA gEB
= Z Z H (bg — ug + V)tr(WaTp_1(n) | [SP_4 H ptr 2t H g“)])
(tplpea (uq)qeB qeEB pEA qgeEB

0<tp<[ap/2] 0<ug<bg
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We then eliminate all W-operators via Propositions 2.3 and 2.1, and
incorporate any coefficients of <%> into the trace terms via the follow-
ing:

Lemma 3.5. [6], [9] Let k, N, M be positive integers with k > 3, and let
Y be a primitive Dirichlet character modulo M. Let N' = lem(N, M?).
Then for (n,N') =1,

Y()tr(Te-a(n) | [Sk 1 (N)]) =t (Tia(n) | [Sp 1 (N) | Ry))
where we consider Sp_(N) | Ry as a submodule of Si_1(N',?).

After collecting terms according to level and subspace with respect
to p, we have the following reduced expressions:

1
Dy = (2-1) [ Zfr Tia(n) | [SPT7 (207 + SET(2597)])
=0

u=1

+ Ztr(Tk,](n) L[S, 2" D)) + 2tr (T 1 (n) | [Sp_1(29)])

u=1

+(1+ (%))tr(m(n) S0 2') | Ry S0, (2) | By))]

1 c

Ba=Y 2= 0)[(1+ () X tr @i | [S77 ™) @ 1 (29™))
t=0 u=1

+(1—(71))Ztr<n1<n) Spr @) + 51 (0]

+ Z‘tr(qu(n) | [SE. 2™ h)])

ftr(Tea(n) | [0 (2p)]) + 26 (Tha(n) | [SL(2)])
(T () | [SE1@9) | By)) + (14 (=) )er(Tia(m) | 524291 By))]

1
=Y (2 t)tr(Th—1(n) | [Sp_, (2" ™)])
t=0
When m = 2, if y = 1, rearrange the definition of Dy to obtain

tr(Tijo(n®) | [Skja(4p*, 1)]) = tr(Tha(n?) | [Skjo(4p, x)]) + Do

Substitute the expression for ¢r (fk/g(TLQ) | [Sk/2(4p,1)]) from Case 1,
along with the reduced expression for D,. Collect terms according to
level and subspace with respect to p to obtain a reduced expression
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for tr (Tvk/Q(nQ) | [Sk/2(4p% 1)]), and hence the decomposition by (1).

Similarly, use E; when x = (2.

When m = 2a + 3 for a > 0, rearranging the definition of F, gives:

tr(Tja(n?) | [Skyo (40242, X)]) = Fu + tr(Trya(n?) | [Sky2(4p**2,1)])
+tr(Tipa(n?) | [Seyaap™ ™, (2))])

— 17 (Thy2(n?) | [Skp2 (4™, x)])

Substituting for the level 4p?**2 terms and then inducting on a > 0,
we have

a

tr(fkm(nz) | [Sk/2(4p”**3,x)]) = Z [Fa+D2a+2+E2a+2]+tT(Tk/2(n2) | [Sk/2(4p, x)])

c=0

Substitute for tr(Ty/2(n?) | [Sk/2(4p, x)]) from Case 1 along with the
summands Fy,, Dygio, Fo,y9, and collect terms according to level and
subspace with respect to p. This gives the reduced expression for
tr(Tyj2(n?) | [Sk/2(4p** 2, x)]). The decomposition follows.

When m = 2a + 4 for a > 0, the results again depend on the choice
of x. If x =1, rearrange the expression for Dy, 4 to obtain:

tr (Tk/Q(nQ) | [Skp(dp*t1)]) = tr (Tk/2(n2) | [Sk/2 (49”2, X)] )+ Dagsa

Then substitute for ¢r(Tya(n?) | [Sko(4p**3,X)]) and Dyays, and
combine terms as usual. Similarly, use Fy,,4 if x = (f) 0

Remark: If p and q are distinct odd primes, the nature of the decom-
position at level 4p™¢° was found to be the same with respect to p as it
was at level 4p™. This suggests that this decomposition theorem may
generalize to level 4N, N any odd positive integer; one would use the
given table for each distinct p | N and then combine the information
for all such primes. Defining terms like those used in Case 2, and using
them to build up to level 4N one prime at a time, may lead to such a
generalization.

4. COMPARISON TO DECOMPOSITIONS OF THE KOHNEN SUBSPACE

The decompositions given in Theorem 3.1 have a strong relationship
to the decompositions given by Ueda [14] for the Kohnen subspace
Sk/2(4p™, x)k when k > 5. Comparing our decompositions to Ueda’s,
we see precisely how the Kohnen subspace sits inside the full space of
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cusp forms. For example, with the notation and definitions as above,
by Theorem 3.1 we have:

Sepaap’, (2)) VSt ) @ spt ()}

1%
S
|
=
—
_
+
|
~—

® (- (DS e s )

® 35271(2%) © 5271(2%) | R,
®450,(2)@ 1+ (—))St.() | R }

while Ueda [14] gives the following decomposition for the Kohnen sub-
space:

Sepa(ap®, (2))e = (1+( ST @ 81 ()
(= ) ") @ Sp; ("))

0351 ,0)0 S04 0) | By
©4S) (1)@ (1+ ( IS | R,

For levels dividing p?, the forms occurring in the isomorphism for the
full space are precisely those which occurred in Ueda’s isomorphism for
the Kohnen space, with their multiplicities doubled. In addition, the
structure of the forms occurring at level 2p" is parallel to the struc-
ture occurring at level p* — the same subspaces appear with the same
coefficients depending on p. The parallelism between our decomposi-
tions and Ueda’s at any level 4p™ indicates a beautiful structure in the
relationship between the Kohnen subspace and the full space of cusp
forms. The regular structure of the decompositions suggests that this
parallelism should extend to all levels.

5. WHEN Sy /5(4N, x, F) 1S NONZERO FOR NEWFORMS
FeS (2M)
Throughout this section, £ = 0 or 1, M and N are odd positive inte-
gers, M is an odd positive integer with the same prime factors as M,

each occurring to odd exponent at least 3, and y and Y’ are even qua-
dratic Dirichlet characters modulo the relevant levels. The discussion
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focuses on Si2(4N, x) for k > 5. All proofs are given for this case,
and analogous arguments hold for V5/5(4N, x) when k& = 3. We give a
series of partial results regarding the structure of the decompositions
for Si/2(4N, x) and V3,5(4N, x) which provide significant information
about the image of the Shimura lift. For all newforms F' € S} | (2'M),
these results lead to the following characterization, in terms of classical
conditions, of whether F' has equivalent half-integral weight cusp forms
of level 4N and character y:

Corollary 5.1. With the notation and terminology as above, let F' €
w_1(2'M). Then Sg;2(4N, x, F') = {0} for all odd positive integers N
and all even quadratic Dirichlet characters x modulo 4N if and only if

the following hold:
(1) There is at least one prime p | M such that ord,(M) is even.
(2) For any such prime p, eitherp =1 (mod 4) and F € S}, (2'M)
or
p=3 (mod 4) and F € S (2'M).

In case Si)o(4N, x, F) # {0}, the minimal level for which this occurs
18 4N = 4M.

This corollary depends on several results given below: First, The-
orem 5.2 takes the space Sp (2'M) and tracks its “appearance” in
the decomposition of Sk/2(4Z\//f, X). This piece of the decomposition of
Sk/2(4]\/4\, X) leads to Corollary 5.5 which explicitly gives the dimension

of Sk/2(4]\/4\, X, F) for all F € S7 ,(2'M); in particular, it gives condi-
tions under which this dimension is zero. Theorem 5.6 and Corollary
5.7 then indicate the effect of introducing additional prime factors into
the level.

5.1. Subspaces of S} ,(2'M) Appearing in the Decomposition

of Sk/2(4]/\/[\, x). For any newform F' € S} ,(2'M), we can determine
precisely the number of copies of F' appearing in the decomposition of
Sks2(4M, x) (i-e. the dimension of Sy /»(4M, x, F')):

Theorem 5.2. Let t € {0,1} and let M = prbp be the product of
distinct odd primes p to positive integer exponents b,. Split the primes
dividing M into the following three sets: U = {p | M : b, = 1}, € =
{p| M:b,>2iseven}, and O = {p | M : b, > 3 is odd}. Consider

any M = T, 0™ with a, odd integers such that a, > max{3,b,} and

any even quadratic Dirichlet character x modulo 4M .

-
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(1) If £ =0, then for k > 5 the total contribution of summands in
the decomposition of Sg;2(4M, x) which are subspaces of Sjt_, (2'M)
18:

a n
e OI16[2]+ DL +1- b)se.eM)
peu peO
(2) If £ £ 0, then for k > 5 the total contribution of summands in

the decomposition of Sk/2(4l\//j, X) which are subspaces of S, (2'M)
18:

e o I o0 @ T e

pEU p€eE peO pee  peé
ap,fp==+1

where Cpo, 5, = (2 + ap) + @(%)
(3) Statements (1) ﬂzd (2) hold for k = 3, with Sk/2(4]/\4\, X) re-
placed by Vi (4M, x).

Proof. We first isolate and simplify all terms in the trace identity for
Sk/2(4M, x) which give contributions to Sy_,(2'M). We then show by
induction that these expressions reduce to the structure of coefficients
and subspaces as given in the theorem.

Since each a, is odd, the trace identity for Sk/2(4Z/\/l\ X) is independent
of the choice of character x. Thus A(n, Lo) =[], (1+ ( )) for each

square Ly | M with Ly > 1. Moreover, since each a, > 3, each prime
dividing M (by construction, the primes dividing M) will occur in some
Ly. For convenience, we group terms in the Lg-sum of the trace identity
by the set of prime divisors of Ly. For subsets P, C U and P: C £, we
will be concerned with terms for which the set of prime divisors of L is
P, U P:. We refer to these as the “PyPg-sums” in the trace identity. In
the following proposition, we determine the contribution to Sp* (2" M)
from these sums together with the Ty ;(n)-term.

Proposition 5.3. Let the notation and terminology be as above, and
let A denote the set of prime divisors of M. For any subsets Pe C £
and Py C U, we get a contribution to Sy (2'M) from the PyPge-sum.

The total contribution to Sy ,(2'M) from these sums is given by:

(2 2=0] D D Knurstr(WeTia(n) | [Sp-,(2'M)])

PuCU PgCE
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where Kp, p, = | |

pEPs

(N DT T e

pEPy peEA
p¢(PgUPy)

Proof. The case Pe = Py = () corresponds to the Ty ;(n)-term in the
trace identity. Reducing this by Proposition 2.2 and isolating the level

2! M term yields
(2=t [Lcalap +1=0y)tr (Th—1(n) | [SP_1(2"M)]) as desired.

If Py = ( but Pe # 0, by reducing each Pg-sum by Proposition 3.4
and then simplifying, we can isolate the level 2! M term which is:

I [0 G (- -3)

pEPe

H (ap"'l_bp)] tr(We:Tp-1(n) | [Si_,(2'M)])

pEA—Pg

(2-1) [

Since SY ,(2'M) = Sp (2'M) & Spt, (2° M) and since both pieces are
closed under the action of Wp,, applying Proposition 2.5 and discarding
all SP+ (2°M) terms yields the desired expression. Moreover, we get
no contributions to Sp ;(2'M) from terms at levels other than 2'M
in the Pg-sums: For a fixed Pg-sum, any contributions to Sy (2" M)
from a level other than Qt% would necessarily come from a summand

n (2'M) | Re C Sp+ (28 M) for some M > M, but only if coefficients

(%) twisted in to “undo” the twist Rc. The method of construction in

Proposition 2.3 prescribes M=M HpePu
with corresponding C' = HpEPu p. The Legendre symbol coefficients
appearing in our terms are all with respect to primes in Pz however,
so they will not affect the twist R¢.

p for some nonempty P, C U,

Now if Py # (), write ﬁu = HpEPM p. In this case, contributions to
St (2tM) from the Py Pe-sums arise only from summands S} ,(2°M) |
Rp C Sg}l(QtMJBM): For each term in a Py Pe-sum, all primes p € Py,
will occur to even exponents in the level. Therefore we cannot obtain
level 28M directly. Reducing each P Pg-sum by Proposition 3.4 and
simplifying, we can isolate the level 2"M]5u term. By Propositions 2.5
and 2.3, we can then isolate the S} | (2'M) | Rp summand which we
reduce by repeated application of Proposition 2.1 part (5) to

[T () + (5)) Larretr (WeeTica(m) | 1S,/ | Ry ])
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where L, =TT [(1+ (2)) (121 +1-2) | TL %) TT (at

pEPg pEPy pEA
pE(PeUPy)

1-b,).

By Lemma 5.4 given below, the only term in HpEPM ((%) + (%))

which will “undo” the twist Rp 1is HpEPM %) Thus the expression

above becomes

(2-1) [ZZKPM,PJT(WPSTkl(") | [Sk-,(2'M)])

Py Pe

+(twists of terms of level QtM)

We then discard the twists of terms of level 2! M and take the sum over
all subsets Pe and P, to obtain the result. O

The following generalization of Lemma 3.5 allows (%) to be “twisted

in” when the trace expression still involves W operators (as above),
provided p fQ:

Lemma 5.4. Let k, N, M, Q be positive integers with k > 3 and (Q, fy) =
1, where fy is the conductor of v, a primitive Dirichlet character mod-
ulo M. Let

N' =lem(N, M?). Then for (n,N') =1 we have:

(1) ¢(n)tr(WoTe1(n) | [S)(N)]) = tr(WoTi1(n) | [S)_1(N) |
Ry]).

(2) W(n) tr(WoTi-(n) | [SR1(N) | Ry]) = tr(WoTe(n) | [SP1(N)]).

Proof. Let [T]g denote the matrix of an operator 7" in terms of a basis B.
Choose a basis B = {Fy,..., F;} of S} | (N) consisting of normalized
newforms. One can show that C = {F} | Ry,..., Fy | Ry} is then a
basis of S} |(N) | Ry. Using Proposition 2.1 and multiplicity-one, we
explicitly compute trace([WQTk,](n)]g) = tr(WoTe_1(n) | [Si_1(N) |
Ry]) and trace([WQTk,l(n)]g) = p(n)tr(WoTp_1(n) | [SP_(N)]),
showing them to be equal. This proves (1), and (2) follows since

F | R, | R, = F for all newforms F € S | (N) and all p € Qy (see
[11]). O

Proposition 5.3 handles contributions to S ,(2°M) from the P Pe-
sums. In fact, no other terms in the trace identity contribute at this
level: Using Proposition 3.4, we replace each Lj-sum with a sum of
terms in which each p | Ly occurs to an even exponent in the levels.
When looking for contributions at level 2° M we can therefore disregard
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Lo-terms where any prime p € O divides Ly. Thus the expression
in Proposition 5.3 gives all contributions to Sj | (2'M) in the trace

identity of Sk/2(4i\//.7, X). To complete the proof of Theorem 5.2, we use
induction to show that eliminating the W-operators in (2) gives the
structure of coefficients and subspaces as stated in the theorem.

Case 1: £ = (). By Proposition 5.3, the contributions to S ,(2'M)

in the trace identity for Sk/2(4]\//f, X) are in this case given by

tr (qu (n) ‘ [51?71 (2tM)])

(2—t>H<ap+1—bp>[Hap+Z(H 51 11 )

peO peU Py pEPy peEU—Py

where ), denotes the sum over all nonempty F, C U.
To obtain the desired structure, we need only show that
a a
[Hap+z ( T3 11 a)] -1 (3131 +1).
peU Py pEPy pEU—Py peU

This is done by inducting on Y|, noting that a, = 2[%”] + 1 since a,
is odd.

Case 2: £ # (0. Due to technicalities in the induction, we prove a
more general result. For any positive integers R and ) with (R, M) =1
and Wy defined on S7 ;(2"MR), we show that for all nonnegative
integral choices of e = |€],0 = |O], and u = |U|, the following equality
holds:

(3) @—0)| S Krtr(WoWr T 1(n) | [Sp_, (2! MR)])
Pe

+ 3 Kpy petr(WoWe Ti—1(n) | [Sp4 (2 M R)])

Py Pe
b
-0+ I ([ +1-2) [T@+1-b)
peU peé peO
xS evorstr(WaTioa(n) | [S7 7 (2! MR)] )
o EE?:: 11)65

The theorem then follows by setting R = @ = 1. We prove (3) by
inducting on both e and u. When inducting on e, the base case e = 0
for all w > 0 and o > 0 is proved using an induction on u analogous to
the one used in Case 1. Now assume (3) holds for all 0 < ¢ < e, u > 0,
and o > 0. Separate off one prime ¢ € £ and write £ = £ U {q}. Split
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the subsets Pg into two types: (1) Pe = Per C £’ (including @), and (2)
P = P U{q} for some Pg as in (1). Rewrite the left-hand side of (3)
in terms of Pg::

(2—1)|(ag+1— {(ZKP +> Y Kn, pg,)fr(WQWpE,Tk 1(n) | [S,?](QtMR)])}
P Py Pg
#1541~ —){(ZKPg, + 3 K, po) (14 (7)) r(WaWa W, T a(m)| [51?1(2tMR>])}

Write MR = M'R' where R' = ¢"R and M' = Mq % and consider
the operators Wy and W, together as W,. M’ has £’ as its set of prime
divisors occurring to even exponents, with |£'| = e — 1 < e. Thus by
induction the expression above equals

-0 162+ IT ([ +1—%) I (@ +1-10,)

peEU pes’ peO
( apBP)p !
x> I cvanss |(ag + 1= b)tr (WoTy_a(n) | [S,77 7€ (2! M R)])
peE’ peEE’
ap,Bp==%1

+([5) +1- %) (1+ (= p ) )er(WoW, T 1 (n) | [8777 7= (2! MR)))

All that remains is to eliminate the W,-operator and combine the
terms in brackets. Decompose each subspace S,ipalpﬁp)pegl (2!MR) into a
direct sum of four subspaces S, (e pﬁp)peg”q%ﬁq (2'MR), with oy, B, = +1.
Simplify the expreqqmn using Propoqltlonq 3.5 and 2.1, and then notice

that the subspaces S, (pe pﬁp)pegl a0l (2'M R) are precisely S, mpﬁ”)peg (2'MR),
and the two sums comblne to sum over all p € £ with the approprlate
coefficients and subspaces. We therefore obtain the right-hand side of
(3) This completes the proof of Theorem 5.2. O

5.2. The Dimension of Sk/2(4]\/4\, X, F).

Corollary 5.5. Let the notation and terminology be as in Theorem 5.2
and let .
F e S} ,(2'M) be a newform. The dimension of the space Sg/2(4M, x, F)

15 given in the following expressions:
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Case 1: If £ =0, then
. - a
dim(Sy> (401, x, F)) = 2 - ) [] (3 [EP] + 1) I (ap +1-1,)

pEU peO

Case 2: If £ # (), then accordingly as F € S,:;gpﬁp PEE(2EM),

dim(Siy> (43, F) = (2=0) TT (3[%]+1) T1 ( [%}H—b_;) TT (a+1-5,) ] crars,

pEU peEE peO pe€

Proof. Case 1 follows immediately from Theorem 5.2. Once it is estab-

lished that any newform F' € S' |(2'M) belongs to one of the subspaces

S,gm]pﬂp)peg(? M), Case 2 will also follow from the theorem. A priori,

F may be a linear combination of forms in these subspaces. However,
since F' is a newform, by Theorem 3 of [1] we have F' | W, = «,, F, for
some choice of o, = %1 for each p € £. Since F' | R, is also a newform
by Theorem 6 of [1], applying Theorem 4 of [1] to F' | R, shows that
F | R, | W,=p,F | R, for some choice of §, = £1 for each p € £.

Thus we have F € S,f;g”ﬂ” P€E(2' M) for some tuple (pay,B,)pee- O
5.3. The Minimal Level for which Sj,,(4N, x, ) May Be Non-
trivial. For a newform F € S} | (2'M), we say “F appears (resp. does
not appear) in the decomposition of Sy /2(4N, x)” if F' is (resp. is not)
an element of a summand in the isomorphism for S »(4N, x).

Theorem 5.6. Let k, M and N be odd positive integers such that M |
N and k > 3. Let t € {0,1} and consider a newform F € Sy (2'M).
Let q be an odd prime such that ¢ [M, and require that v, = ord,(N) >
3 be odd for all p | N with p # q. Finally, let x (resp. x') be any even
quadratic Dirichlet character modulo 4N (resp. 4Ngq). For k > 5
(resp. k =3), if F' does not appear in the decomposition of Sy/2(4N, x)
(resp. Vi;9(4N,x)), then F' does not appear in the decomposition of
Sk2(4Ng, x') (resp. Vsp2(4Nq, x')).

Before giving the proof of Theorem 5.6, we state and prove the fol-
lowing:
Corollary 5.7. Let M and t be as above, and consider a newform
F e S) (2'M). Fork >5 (resp. k = 3), if F does not appear in
the decomposition of Sj2(4M, x) (resp. Vs2(4M, x)) for any positive
integer M = Hp‘Mp(’“P with odd integers o, > 3, and for any even
quadratic Dirichlet character modulo 4]/\4\, then F' does not appear in the

decomposition of Sk/2(4N,X") (resp. Vi;2(4N, X")) for any odd positive
integer N and any even quadratic Dirichlet character x' modulo 4N .
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Proof. We further abbreviate the statement “F appears (resp. does
not appear) in the decomposition of Sy /5(4N, x)” as “F appears (resp.
does not appear) in Sg2(4N, x)”. Let F € Sp_,(2'M). If M /N,
then F clearly cannot appear in Sy /2(4N, x), so suppose M | N. Write
N = M’qlﬂ1 -+ gP, splitting off all primes ¢; not dividing M, where 3; =
ordg (N) fori=1,...,r. There is no character-dependence in the trace
identity when the prime exponents are odd, so put N = ]\//qu1 - -qu,

with M = [T, P Where a;, > max {3, ord,(M')} and odd.

By hypothesis, F' does not appear in Sk/2(4]\//f, x) for any even qua-

dratic Dirichlet character xy modulo 4M, so by repeated application of
Theorem 5.6 on the primes ¢;, F' does not appear in Sk/2(4]v, ) for any
even quadratic Dirichlet character ¢y modulo 4AN. Since N | N and they
have the same prime factors, any even quadratic Dirichlet character '
modulo 4N can be obtained from a choice of ¢, viewed as a character
modulo 4N. The usual containment relations among spaces of modular
forms then show that F' does not appear in Sy/2(4N, x'). ]

Proof of Theorem 5.6. Suppose a newform F € Sp ,(2'M) does not
appear in

Sk2(4N, x), for some odd positive integer N and some even quadratic
Dirichlet character modulo 4N. Let ¢ be an odd prime such that g /M,
and let v, = ord,(N).

Case 1: v, = 0. Using Theorem 3.3 and methods previously dis-
cussed, one computes that

(T (%) | [Sepa (4N 0)]) = 32 6 @N/d) tr(Te1(m) | (S (a)])
2N

+ 3 Cryutr (Wi, T 1 (0) | [S_1 (2N, 0,)])
Lo

and

1

tr(Thj2(n2) | [Se/2(4Ng, x)]) = 2(271))[ 3" 6 (@N/d)tr(Ti1(n) | [S)_, (dg")])

v=0 d|2N

+ ZI CLo,uptT(WLOkal(n) | [Sl(c)f](ththw“p)])}

where

(1) ZI denotes the following multiple sum: Z Z Z :

Lo squares L plLg p|2L1
I<Lo[N o<t <[%2] 0<up<by
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(2) Cr,u, and Ny, are defined as follows: For each Lo, put a, =
ord,(Ky) for each prime dividing p | Ly and put b, = ord,(2K;)
for each prime p | 2L;. For integers ¢, and u, with 0 < u, < b,
and 0 < ¢, < [%Z], put

Crou, = H (1 + (—_n)) H (bp—up+1) and Ny, = Hp% H P

p
plLo p|2L1 plLo pl2L1

These two trace identities are almost identical; the main distinction
is the appearance of ¢” in the levels in the second. The decomposition
Se_1(2"¢" Ny ) = Sp_1(2'¢" Ny, ) @ ng](th”th’up) is blind to ¢",
since v = 0 or 1 and only prime divisors with exponents equal to 2
affect the nature of S™. Therefore, the reduction of the respective trace
terms to eliminate all W-operators will be parallel, with the factor of ¢”
“along for the ride” in the levels of the second identity. Therefore, since
F does not appear in Sy /2(4N, x), when we introduce the additional
prime ¢ into the level and look at the v = 0 terms in the trace expression
for Si/2(4Ngq, x'), we see that F' does not appear in Si/2(4Ng, x').

Case 2: v, = 2b+ 1 for some nonnegative integer b. We prove
that if F' does not appear in Sy /2(4NN, x), then F' does not appear in
Sk/2(4N¢?, x") for any even quadratic Dirichlet character x” modulo
4Ng?, in order to avoid the issue of character-dependence in the trace
identity. Then by the usual containment relations, F' does not appear
in Sy/2(4Ngq, x').

In transforming the trace identity for ¢r (fk/g(n2) | [Sk/2(4N, x)])
into an isomorphism for Sy /5(4V, x), we must combine certain terms to
determine the summands at any specified level. The way in which these
terms combine produces Legendre symbol factors in the coefficients
which depend on the level, and gives us some constant multiple of the
basic “building block™ of forms occurring at that level. Put

Py = tr(Tisa(n?) | [Ska(4NG2, X")]) = tr(Te2(n?) | [Sk/2(4N, x)]).

Then tr(Tk/g(nQ) \ [Sk/2(4Nq2,X”)]) = PN,q2+tT(Tk/2(n2) | [Sk/2(4N; X)])
To relate the decompositions of Sy2(4Ng¢? x") and Si/2(4N, x), we
must compare the structure of the expressions for ¢r (Tk/g(n?) | [Sk/2(4N, x)])
and Py, in terms of newforms. In particular, we must show that in
adding Py g2 to tr(Tys(n®) | [Sk/2(4N,x)]), we add a constant mul-
tiple of the entire “building block” at any specified level in order to
prove that we introduce no additional forms.

We introduce abbreviated notation which condenses the trace expres-
sions, yet still illustrates the behavior at each level. Write N = N’g%*!
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(so that ¢ /N') and put ¢, = ord,(2N') for each prime p | 2N'. For
integers v with 0 < v < 2b+ 3, define

XN’,?J = Z H — Up +1 tr(Tk 1( ‘ [527]((]” H pup)])

pl2N'  p[2N’ p[2N’
0<up <bp

+ 3 Crotr (Weg i (0) | [S4(a" Ny 0,)])

!
with Z , Crou, and Ny ., as in Case 1. Since our expressions will
Lo
often differ only by an additional W-operator, also define

Wo [Xnrw] = Z H » — up + 1)tr(WoTp_1(n) | [SR 1(¢" HPUP)])

pl2N’  p[2N’ p|2N’
0<up<byp

+Z CLo,'llp WQWLOTk 1( ) ‘ [S/[C]f](qutp’"p)])

Lemma 5.8. With the abbreviated notation and terminology as above,
we have the following expressions in terms of newforms:

2b+1
tr(Tiya(n®) | [Skp@N.X)]) = 3 (2b=0+2) Xvr oo (14— ; ) [bXN,mLZ (b=v+1) Wz [X 0]
v=0 v=1
and
2b+2 b+1
Prg = Xnranss +2 3 Xnro + (14 (— - ) [Xnro + D0 W (X0
v=0 v=1

Proof. By Theorem 3.3,
tr(Ti/2(n?) | [Sky2(4N,X)]) = tr(Tk-1(n) | [Sk-1(2N)])
+Z 11 1+( ) tr (Wi Te—1(n) | [Sk-1(2LoLy)])

o plLg

where Lj runs over all squares 1 < L | N with corresponding L} =
NTL,; Pl po%N) " Let Ly denote a square divisor of N’ with L, #

]-7 and pUt Ll - N, Hp“’é) piqup(N)- We then have L{] = LU, qu’ or

Log?* for some Ly and some ¢ = 1,2,...,b, with corresponding L} =
Lg®*t', N', or L; respectively. After rewriting the trace expression
above in terms of L, straightforward computation using Proposition
2.2 yields the desired expression. The proof for Py .2 is analogous. O
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Notice that the terms (1 + (%")) Wz [ X apr2] + 2X N0 opr0 +

XN 2p+3 appear in Py 2 but not in tr (fk/g(nQ) | [Sk/2(4N,x)]). Aside
from these terms, we are adding constant multiples of existing terms,
with the constants independent of 2N'. It remains to show the following
claims:

(1) The terms (1 + <7Tn>> Wq2b+2 [XN’,2b+2] -+ 2XN’,2b—|—2 —+ XN’,2b+3

give no contribution at levels dividing 2/N'.

(2) For terms in tr(Ty2(n?) | [Sk2(4N,x)]) giving contribution
at any particular level dividing 2N’, we have added the same
constant multiple of each term, thus preserving the structure of
the decomposition at that level.

Let d be a positive divisor of 2N’. Since S} _,(d) | R, € Sy _,(dg?) and

one piece of the coefficient (1 + (%”)) “twists in” to eliminate the R,

q
Clearly we also get contributions at level d from the term Xy . How-

ever, Xy 9, for v # 0 and (1 + (%")) Woee [ X i 20] for v # 1 involve

only terms whose levels are divisible by q. Thus they give no contribu-
tions at levels dividing 2N’. This proves the first claim.

twist, we will get contributions at level d from the term <1 + <%">> W2

To prove the second claim, we need the following

Lemma 5.9. With the notation and terminology as above, we have
—n
(14 (57) Wee 1wl = Xovo + Fla. 1

where E(q, R,) is a sum of terms of levels divisible by q and/or twisted
by R,, hence no terms in E(q, R,) contribute at levels dividing 2N'.

Proof. We have
Si-alg’ H pv) = @ Sk (N(B,C)) | Rpyc

p|2N Qu=A+B+C

with Qy and N(B,C) as in Proposition 2.3. Our interest is limited
to those summands where ¢ /N (B,C), for only these will give con-
tributions at levels dividing 2N’. By construction, ¢ fN(B,C) occurs
only when ¢ € C. After the usual manipulations to eliminate the W.-

operators and twist in coefficients of (%), and after separating out

terms involving subspaces S} (N (B,C)) | Rp+c where ¢ | N(B,C),
we have:

—

Xl
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(4 (e s
q
= > [ t-uw+DtrTiaam) | [ P Si(N(B.C) | Rere—qy])

pl2N’  p|2N’ Qo=A+B+C
0<u,<b, qeC

+ Z Crou, r(We,Ti i) | [ €D SE_(N(B',C") | Rpricr—1qy]) + (4, Ry)
with E(q, R,) as above. The set of partitions 2y = A + B + C with
q € C is precisely the set of partitions of Qy — {¢}. Thus

D  Sii(NB.C) | Rprc g = Sia ([ »*)
Qp=A+B+C p|2N'
qgeC
The direct sum over partitions of €2, is handled similarly, and by the
definition of Xy o, we obtain the result. 0

By Lemmas 5.8 and 5.9, we see that adding the expression in terms
of newforms for Py 2 to that for ¢r(Ty_1(n) | [Sp_(4N)x]), we add
3b + 5 copies of Xy to the existing b 4+ 1 copies. Therefore we have
added the same constant multiple of each term at any level dividing
2N', with the constants being independent of 2N’ (note that Xy g is
the aforementioned “building block”).

Case 3: v, = 2b + 2 for some nonnegative integer b. Write N =
N'¢?**2. F does not appear in Si/;2(4N, x") = Sk/2(4N'¢***2, x") for
any even quadratic x”, hence by containment relations, F' does not
appear in Sy, (4N'¢**!, ') for any even quadratic x'. Then F' does
not appear in Sg/5(4N"¢?"™3, x) = Sk/2(4Ng, x) for any even quadratic
X by case 2. This completes the proof of Theorem 5.6. U

5.4. Connections Between These Results and Flicker’s The-
orem. Restricting our attention to S™(2*M), Theorem 5.2 allows us
to identify certain forms which are “missing” from decompositions for

Sk2(4M, x). For example, when p =1 (mod 4), any subspaces with a
coefficient of 1 — (%) will not appear. These will also be missing from

Sk/2(4N, x) for any odd N and any even quadratic Dirichlet character
x modulo 4N, by Corollary 5.7. As a consequence, Corollary 5.1 char-
acterizes in terms of classical invariants those integral weight newforms
F € S [(2'M) which have equivalent half-integral weight cusp forms
at some level 4N with N odd. This is a partial reformulation of a
representation-theoretic result of Flicker’s [5] regarding Sk /2(4N, x, F):
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Theorem. [Flicker| [5] Let (H1) denote the following condition on the
p™" components pp of the automorphic representation p associated to
F: For all primes p such that p, is of the principal series, py,(—1) =
pop(—1) = 1, where p1, and poy, denote the characters of Q) such
that p, ~ T(p1p, pop). Then there exists N with Siso(4N, x, F') # {0}

if and only if (H1) is satisfied.

We have rephrased these representation-theoretic conditions in terms
of the prime-powers in the level of the form F and in terms of the
W,-eigenspace for F' with respect to those primes occurring with even
exponent. At present, we have reformulated Flicker’s theorem only in
the case F' € Sp [(2'M), since Theorem 5.2 and Corollary 5.5 only
held for newforms in S} | (2'M). However, careful examination of the
full decompositions when M has one or two distinct prime factors re-
vealed certain patterns in the appearance of the twist terms. Evidence
suggests that the appearance of subspaces of SP* (28M) in the decom-

position of Sk/2(4]\//f, x) may follow a pattern similar to the one observed
at level 4p™:

Recall that for any choice of nonempty subset B C (25, the space
Snt (28 M) contains summands S (2* H q" H p”) | Rp where A

qgeB pEA—B
is the set of prime divisors of M, v, =0or 1, and Rp = RHq

evidence discussed above suggests the following:
(1) When € ={p | M : b, > 2 is even} = B, the entire space
,’;71(2th”‘? H p") | Re C Sp,(2'M) should appear in

geB pEA—B

The

e’

the decomposition of Sk/2(4]\//f, X). Its coefficient structure with
respect tod = {p | M : b, =1} and O = {p | M : b, >
3 is odd} should parallel that of case (1) in Theorem 5.2. Ad-
ditionally, we expect some Legendre symbol coefficients with
respect to £ to occur.

(2) When £ # B, subspaces S,(:i(ﬁpﬂp)peg"g(Qtprodqegq”q H ) [C

pEA—B

S+ (2" M) should appear in the decomposition of Sk/2(4Z/\/[\, X)-
Their coefficient structure with respect to & and O should par-
allel that of case (2) in Theorem 5.2. Additionally, we expect
different Legendre symbol coefficients with respect to B and

£ —B.

The theory contained in this section also has a connection to an im-
portant result of Waldspurger’s: When (H1) is satisfied, Waldspurger
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[17] gives a means of constructing Si2(4N, x, F') explicitly, by first

identifying N, the minimal N for which this space is nonzero, and
then analyzing cases depending on N and the level of F. There are
many cases to consider, and the conditions given in some cases involve
a great deal of complexity. Alternatively, we determine /N in terms of
the subspace S,i{alpﬁ”)peg(QtM) to which F' belongs.

6. ExaMPLES: NON-ZERO NEWFORMS F' WITH S (4N, x, F) =0

Our results raise the following question: Do the “missing subspaces”
have positive dimension? That is, are there nonzero forms which are
not in the image of the Shimura lift for Sj/5(4N, x) for any odd posi-
tive integer N and any even quadratic Dirichlet character x? We give
examples when k£ = 3 which show that the answer is yes. These are
computed using Cremona’s tables [4] which list the following identify-
ing information for rational newforms F € S | (M):

(1) The Hecke eigenvalues A, of F for T5(p) when p M and p <

100.
(2) The eigenvalues, either +1 or —1, of F' for W, when ¢ | M and
g < 100.
To utilize this information, suppose F(z) = >.°° a(n)e*™™* is a

normalized newform in Sy ,(M). For a prime p | M, we then have
F R, =5 b(n)e?™ where b(n) = (g)a(n). If p|M, b(n) = 0.

n=1

Otherwise, corresponding a(n) and b(n) can differ only in sign, and
will differ precisely when n is a quadratic non-residue modulo p. Since
a(n) = A,, the eigenvalue of F' for the Hecke operator Ty(n), we have
a relationship between the Hecke eigenvalues of F' and those of F' | R,,.
We can therefore make use of the eigenvalue information in the tables
to determine whether F' € SI'(M) or F is the twist of some newform
of lower level. Moreover, if F' € SJ(M), we can then determine the
subspace of S (M) to which F' belongs with respect to a prime p | M
(i.e. whether F' € SE"F (M), etc.).

Example 6.1. Using this method, we have dim(Sy*> ~(338)) > 2:

Cremona lists 6 distinct rational newforms of level 338, called 338 A
through 338F, so dim(S,(338)) > 6. In comparing the Hecke eigenval-
ues of 338 A through 338 F' to the corresponding eigenvalues of the forms
listed at level 26 = 2-13, we see that 338C" and 338 F' are both twists by
Rq3 of newforms of level 26. Investigation of the Hecke eigenvalues as
above shows that 338 A | Ry3 = 338B and 338D | R13 = 338E, so these
four are in ST (338). Checking the sign of the Wis-eigenvalue for each
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form, we find that 338A and 338B are in S3*T(338), while 338D and
338F are in Sy* ~(338). Thus dim(S,*> (338)) > 2.

Example 6.2. Similarly, we have dim(S;" (722)) > 1.

We have given examples of missing subspaces with positive dimen-
sion, of both the p — — and p — + types. In computing with Cremona’s
tables for forms in S9(p?) with p an odd prime less than 100, it was not
possible to show that any of the missing spaces had positive dimen-
sion. However, extended tables for levels 1001 < N < 5000 given on
Cremona’s webpage led to the computations that dim(S;'~ ~(37%)) > 2
and dim(S5* *(432)) > 1. Cremona’s tables deal only with rational
newforms, and with more complete information it may be possible to
obtain examples at levels p? for smaller primes.

7. CONCLUSION

In this paper, we have examined the Hecke structure of spaces of
half-integral weight cusp forms by “looking backwards” through the
Shimura correspondence. Our partial decompositions for Sy /2(4N, x)
and V3/5(4N, x) gave important information about the image of the
Shimura lift. Decompositions in certain cases illustrated the relation-
ship between the Kohnen subspace and the full space of cusp forms.
Certain results were restricted to newforms in S |(2'M) for t = 0,1
and M an odd positive integer, although possible methods for obtaining
analogous results for newforms F € Sit (2°M) were discussed.

Several interesting question are raised by these results. First, are
all the missing spaces of newforms in these decompositions positive-
dimensional? (we have seen some examples in Section 6). Since the
trace of the Hecke operator T} on any space S of integral weight cusp
forms is equal to the dimension of S, computing the trace of 7T} on
SP=(2'M) and Sp~(2!M) can provide the answer. This computation
is currently being pursued, using the formulas for traces of 7;, and of
the composition W,T,, on S{ | (2'M) given in Ross [10] and Yamauchi
[18] respectively.

Second, is the Shimura lift always non-surjective? Determining di-
mensions of the missing spaces of newforms in general may provide
additional examples of non-surjectivity for other values of £ when N is
odd. Additionally, extending our decompositions to the case of arbi-
trary N would be a step towards answering this question. This would
require additional trace identities, as Theorem 3.3 is only equipped to
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handle levels where ordy(N) is at most two. Trace relationships han-
dling almost all cases of ordy(NN) are given by Ueda in [16], and could
be used to obtain such decompositions via similar methods.

Perhaps most interestingly, what exactly is the significance of the
—1-eigenspace of the W, operator? Our results indicate that forms in
this eigenspace for some p dividing their level may not have equivalent
half-integral weight forms. To gain insight into this question we appeal
to the theory of L-series: The sign in the functional equation for the
Dirichlet L-series L(F,s) associated to an integral weight form F €
S? (N) is determined by the Fricke involution Hy, a composition of
W, operators for all p | N. When this sign is —1, L(F,s) vanishes
for the value of s in the center of the critical strip. If F' has weight
2 and integral coefficients, it can be shown that L(F,s) = L(FE,s)
for some elliptic curve E over Q, and the Birch—Swinnerton-Dyer [3]
conjecture states that the rank of the associated elliptic curve F is
equal to the order of vanishing in the functional equation for L(E, s).
The —1-eigenspace of W, plays a role in these vanishings, and we hope
to develop a greater understanding of this role.
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