
HECKE STRUCTURE OF SPACES OFHALF-INTEGRAL WEIGHT CUSP FORMSSHARON M. FRECHETTEAbstra
t. We investigate the 
onne
tion between integral weightand half-integral weight modular forms. Building on results ofUeda [14℄, we obtain stru
ture theorems for spa
es of half-integralweight 
usp forms Sk=2(4N;�) where k and N are odd nonnegativeintegers with k � 3, and � is an even quadrati
 Diri
hlet 
hara
termodulo 4N . We give 
omplete results in the 
ase where N is apower of a single prime, and partial results in the more general
ase. Using these stru
ture results, we give a 
lassi
al reformula-tion of the representation-theoreti
 
onditions given by Fli
ker [5℄and Waldspurger [17℄ in results regarding the Shimura 
orrespon-den
e. Our version 
hara
terizes, in 
lassi
al terms, the largestpossible image of the Shimura lift given our restri
tions on N and�, by giving 
onditions under whi
h a newform has an equiva-lent 
usp form in Sk=2(4N;�). We give examples (
omputed usingtables of Cremona [4℄) of newforms whi
h have no equivalent half-integral weight 
usp forms for any su
h N and �. In addition,we 
ompare our stru
ture results to Ueda's [14℄ de
ompositions ofthe Kohnen subspa
e, illustrating more pre
isely how the Kohnensubspa
e sits inside the full spa
e of 
usp forms.1. Introdu
tionA vital part of the theory of integral weight modular forms is thestudy of simultaneous He
ke eigenforms, in parti
ular newforms. The
lassi
al \multipli
ity-one" result says that a newform is expli
itly de-termined up to 
onstant multiple by its eigenvalues for almost all theHe
ke operators Tk(p), p a prime, k a positive integer. If we attemptto de�ne \half-integral weight newforms" using a de�nition analogousto that for integral weight, the theory breaks down rapidly, the 
ru
ialpoint being the la
k of a multipli
ity-one result. There are howeversigni�
ant 
onne
tions between integral weight He
ke eigenforms andhalf-integral weight He
ke eigenforms, most notably the Shimura 
orre-sponden
e [12℄. This 
orresponden
e maps He
ke eigenforms to He
keDate: November 7, 2004.1991 Mathemati
s Subje
t Classi�
ation. 11F37, 11F32, 11F11.1



2 SHARON M. FRECHETTEeigenforms, whi
h suggests that our knowledge of the integral weightstru
ture 
an be \transported" to knowledge about half-integral weightforms. Through a representation-theoreti
 approa
h, Shintani [13℄ pro-vides a mapping whi
h is an adjoint to the Shimura lift and also pre-serves He
ke eigenforms. Unfortunately, the image of the Shintani mapmay be trivial, so it does not ne
essarily a�ord a pra
ti
al method oftransporting the He
ke stru
ture ba
k.A promising alternative is to use tra
e identities to give de
ompo-sitions of the spa
es of 
usp forms Sk=2(4N;�) whi
h illuminate theirHe
ke stru
ture. These de
ompositions take the form of isomorphismsbetween Sk=2(4N;�) and dire
t sums of spa
es of integral weight new-forms; the isomorphisms are as modules for the respe
tive algebrasgenerated by the He
ke operators a
ting on half-integral weight and in-tegral weight 
usp forms. Theorem 3.1 gives su
h de
ompositions whenN is the power of a single odd prime and � is even and quadrati
. InSe
tion 4 we 
ompare these de
ompositions to Ueda's de
ompositions[14℄ of the Kohnen subspa
e, showing more pre
isely how this subspa
esits inside the full spa
e of 
usp forms.While Ueda's tra
e identity holds for levels 4N where N is any oddpositive integer, transforming it into an isomorphism for Sk=2(4N;�)be
omes in
reasingly 
omplex as the number of odd prime divisors ofN in
reases. In the 
ase of more general levels, partial He
ke stru
tureresults are suÆ
ient to prove that subspa
es of newforms satisfying
ertain 
onditions are missing from the de
ompositions of Sk=2(4N;�)for allN and � as above. Therefore all forms in these subspa
es are notin the image of the Shimura lift [12℄ for any su
h N and �. These results
ompletely 
hara
terize the largest possible image of the Shimura liftfrom Sk=2(4N;�) forN and � as above, thus providing 
onditions underwhi
h this map will fail to be onto.Spe
i�
ally, Theorem 5.2 gives partial de
ompositions of Sk=2(4
M;�)when k � 5 and the subspa
e V3=2(4
M;�) � S3=2(4
M;�) when k = 3,for odd positive integers 
M satisfying 
ertain restri
tions. In Theorem5.6 and Corollary 5.7, we show how introdu
ing additional prime fa
-tors into the level a�e
ts the nature of the de
ompositions; essentially,shifting from the de
omposition of Sk=2(4N;�) to that of Sk=2(4Nq; �)where M j N and q 6 jM does not result in the appearan
e of anyadditional newforms at levels dividing 2M . Thus the nature of thede
ompositions with respe
t to any prime p jM is un
hanged.For t = 0 or 1 and M an odd positive integer, we 
onsider the sub-spa
e Snk�1(2tM) � S0k�1(2tM) de�ned in [15℄ whi
h ex
ludes all forms



HECKE STRUCTURE OF SPACES OF CUSP FORMS 3in S0k�1(2tM) that are twists of newforms of lower levels. As a 
onse-quen
e of Theorem 5.2 and Corollary 5.7, Corollary 5.1 
hara
terizesthose newforms F 2 Snk�1(2tM) appearing in the image of the Shimuralift from Sk=2(4N;�) for some N and � as above. This 
hara
terizationis given in terms of the 
ongruen
e modulo 4 of the primes p divid-ing M , the exponents to whi
h these primes o

ur, and the subspa
eof Snk�1(2tM) to whi
h F belongs. Corollary 5.1 provides a 
lassi
alreformulation of representation-theoreti
 
onditions given by Fli
ker[5℄ and Waldspurger [17℄ in theorems determining when a newformF 2 Snk�1(2tM) has equivalent half-integral weight 
usp forms. Theseresults are only given for F 2 Snk�1(2tM); some dis
ussion of how onemay pro
eed in investigating the 
ase F 2 Sn?k�1(2tM) is also given.In Se
tion 6 we provide examples of nonzero newforms whi
h are notin the image of the Shimura lift for any Sk=2(4N;�) as above. Theseexamples are produ
ed using tables of Cremona [4℄, turning to the
ase k = 3. We 
ompute lower bounds for the dimension of 
ertainsubspa
es of S2(2tM) for parti
ular values of t and M .Many interesting questions have been raised by these results, mostnotably questions about the role whi
h the Atkin-Lehner involutionWp plays in determining whether a newform F 2 Snk�1(2tM) is in theimage of the Shimura lift at a given level. In the 
on
luding remarkswe dis
uss this and other related questions.This paper 
ontains results of my thesis work at Dartmouth College.I would like to express my deep gratitude to my thesis advisor, ThomasShemanske, for all his guidan
e and en
ouragement. I would also liketo thank John Rhodes for several insightful 
onversations.2. Preliminaries2.1. Notation and Terminology. Let SL2(Z) = �( a b
 d ) : a; b; 
; d 2Z andad� b
 = 1	, and for ea
h positive integer N 
onsider the 
ongruen
esubgroup �0(N) = �( a b
 d ) 2 SL2(Z) : 
 � 0 (mod N)	. Let � bea Diri
hlet 
hara
ter modulo N . Then � = QpjN �p where �p is aDiri
hlet 
hara
ter modulo pordp(N). We will be 
on
erned with �p =��p�, the Legendre symbol modulo an odd prime p.Let k � 3 be an odd positive integer. Denote the spa
e of all 
uspforms of weight k�1, level N and 
hara
ter � by Sk�1(N;�), or simplySk�1(N) if the 
hara
ter is trivial. For ea
h positive integer n relativelyprime toN , we 
onsider one He
ke operator Tk(n) a
ting on Sk�1(N;�).



4 SHARON M. FRECHETTEFor ea
h positive integer Q with (Q;N=Q) = 1, let WQ denote theAtkin-Lehner involution, and abbreviateWqordqN asWq. Let R� denotethe twisting operator with respe
t to the Diri
hlet 
hara
ter �, andwrite R� = Rp if � = ��p�. Finally, let Bd denote the shift operatorfor a positive integer d. De�nitions and details 
an be found in [8℄ or[15℄. We will often need the 
ommuting relationships between theseoperators, given in the following:Proposition 2.1. [1℄, [2℄, [15℄ For N and n positive integers and k > 1an odd positive integer, let  be a quadrati
 
hara
ter of 
ondu
tor f ,and let Q be a positive divisor of N with (Q;N=Q) = 1. For anyF 2 Sk(N), the following hold:(1) If (n;Nf ) = 1, then F j R j Tk(n) =  (n)F j Tk(n) j R .(2) If (n;N) = 1, then F j Tk(n) jWQ = F j WQ j Tk(n).(3) If (Q; f ) = 1, then F j R jWQ =  (n)F jWQ j R .(4) If Q0 is another divisor of N su
h that (Q0; QN=Q0) = 1, thenF jWQ0 jWQ = F j WQ0Q = F jWQ jWQ0.Moreover, if N = p�M , with p an odd prime, M a positive integer withp 6 jM , and � = 0 or 1, then(5) F j Rp j Wp2 = ��1p �F j Rp.We will also have need of several subspa
es of Sk�1(N;�): The sub-spa
e S�k�1(N;�) generated by the oldforms, its orthogonal 
omplementthe subspa
e S0k�1(N;�) generated by the newforms, and the image ofthis spa
e under the a
tion of Rp, denoted S0k�1(N;�) j Rp. For details,see [8℄ or [15℄. We will also use the following 
orollary to the strongmultipli
ity-one result:Proposition 2.2. Let N be a positive integer, let d be a positive di-visor of N , and let Æ(N=d) denote the number of positive divisors ofan N=d. Then we have the following isomorphism as modules for theHe
ke algebra: Sk(N) �=MdjN Æ(N=d)S0k(d)Proof. This follows from Lemma 15 and Theorem 5 in [1℄. �In the half-integral weight setting, denote the spa
e of all 
usp formsof weight k=2, level 4N and 
hara
ter � by Sk=2(4N;�). For ea
h pos-itive integer n relatively prime to 2N , we 
onsider one He
ke operatoreTk=2(n2) a
ting on Sk=2(4N;�). For details, see [15℄.



HECKE STRUCTURE OF SPACES OF CUSP FORMS 5In the 
ase k = 3, we must restri
t attention to those half-integralweight 
usp forms whi
h 
orrespond to integral weight 
usp forms un-der the Shimura 
orresponden
e. We have the following 
onstru
tion:Let U3=2(4N;�) be the subspa
e of S3=2(4N;�) whi
h is spanned bythe fun
tions h (tz) where h (z) =P1m=1  (m)me2�im2z,  is a prim-itive 
hara
ter modulo a positive integer r with  (�1) = �1, and t isan integer, su
h that the 
onditions tr2 j N and � = ��t� � are sat-is�ed. Let V3=2(4N;�) be the orthogonal 
omplement of U3=2(4N;�)in S3=2(4N;�) with respe
t to the Petersson inner produ
t. Under theShimura 
orresponden
e, the forms in U3=2(4N;�) 
orrespond to Eisen-stein series and the forms in V3=2(4N;�) 
orrespond to 
usp forms (see[14℄). Therefore when k = 3, we 
onsider only V3=2(4N;�).The de
ompositions given in this paper are obtained from tra
e iden-tities. Lettr(T j V ) denote the tra
e of an operator T on a ve
tor spa
e V . Ifwe have subspa
es Shalf � Sk=2(4N;�) and Swhole � Sk�1(2N), whereN is a positive integer and � is a quadrati
 Diri
hlet 
hara
ter modulo4N , it 
an be shown that(1) tr(eTk=2(n2) j Shalf) = tr(Tk�1(n) j Swhole) 8n with (n; 2N) = 1i� Shalf �= Swhole as modules for the algebragenerated by all the He
ke operatorsSee [6℄ for details. By expli
itly 
al
ulating tr� eTk=2(n2) j �Sk=2(4N;�)��when (n; 2N) = 1 and � is even and quadrati
, Ueda [14℄ proved anidentity relating this tra
e to 
ertain tra
es on spa
es of integral weightforms. We use this identity in proving Theorem 3.1 and Theorem 5.6and its 
orollaries. To do so, we must break apart the newform spa
es,isolating a subspa
e Snk�1(N) � S0k�1(N) whi
h is 
losed under notonly the appropriate W and T operators but also under the twistingoperators Rp for any odd prime p with p2 j N . This spa
e was de�nedby Ueda, and is denoted by Snk�1(N) in [14℄ and by S�k�1(N) in [15℄.We give de�nitions of Snk�1(N) and its relevant subspa
es, as well asseveral properties whi
h will be needed throughout.2.2. The Subspa
e Snk�1(N). In general, the spa
e S0k�1(N) need notbe 
losed under quadrati
 twists. In fa
t, for an odd prime p withordp(N) = 2, taking a newform of level p2M with p 6 jM and twistingby Rp gives us a newform of level pM or M by Theorem 6 of [1℄.Moreover, S0k�1(p�M) j Rp � S0k�1(p2M) for � = 0; 1. To obtain asubspa
e of S0k�1(N) whi
h is 
losed under quadrati
 twists, we must



6 SHARON M. FRECHETTE\split o�" all forms in S0k�1(N) whi
h are quadrati
 twists of newformsof lower levels.Let 
 denote the set of all odd primes dividing N , and for ea
h p 2 
let �p = ordp(N). Let e
 = 
 [ f2g, and write N = 2tM = Qp2e
 p�p.Put 
2 = fp 2 
 j �p = 2g, and let RA =Qp2ARp for any subset A of
2. For any partition 
2 = A + B + C of the set of primes o

urringwith exponent 2, de�ne an integerN(B;C) = Yp2e
�(B+C) p�p Yp2B p:Then S0k�1(N(B;C)) j RB+C � S0k�1(N) by repeated appli
ation ofTheorem 6 of [1℄. If we take the sum of the subspa
es S0k�1(N(B;C)) jRB+C over all partitions 
2 = A + B + C where 
2 6= A, this willin
lude all forms in S0k�1(N) whi
h are quadrati
 twists of newforms oflower levels. We therefore putS2k�1(N) = X
2=A+B+C
2 6=A S0k�1(N(B;C)) j RB+C ;and de�ne Snk�1(N) to be the orthogonal 
omplement of S2k�1(N) inS0k�1(N) with respe
t to the Petersson inner produ
t. For example, ifN = 2p2, we haveS2k�1(2p2) = S0k�1(2p) j Rp + S0k�1(2) j Rp:Proposition 2.3 (Ueda). [15℄ Let the notation and terminology be asabove. Then S0k�1(N) = M
2=A+B+C Snk�1(N(B;C)) j RB+CNote that the 
2 = A summand is Snk�1(N). We refer to the dire
tsum of the remaining terms as Sn?k�1(N).With respe
t to ea
h odd prime p dividing N with ordp(N) � 2, wede�ne four subspa
es of Snk�1(N) as follows: for ea
h 
hoi
e of �p; �p =�1 putSp�p�pk�1 (N) = fF 2 Snk�1(N) : F j Wp = �pF and F j Rp jWp = �pF j RpgThese subspa
es appeared in [11℄, denoted by SI , SII , SII , and SIII.It is easy to show that Snk�1(N) = Sp++k�1 (N) � Sp+�k�1 (N) � Sp�+k�1 (N) �Sp��k�1 (N). In general, we will need to split the spa
e Snk�1(N) intosubspa
es depending on ea
h odd prime p j N with ordp(N) � 2. Let
2+ denote the set of odd prime divisors of N with ordp(N) � 2.



HECKE STRUCTURE OF SPACES OF CUSP FORMS 7For any 
hoi
e of �p; �p = �1 for ea
h p 2 
2+, let S(p�p�p)p2
2+k�1 (N)denote the subspa
e of Snk�1(N) 
onsisting of forms F whi
h satisfy therelations F jWp = �pF , and F j Rp jWp = �pF j Rp. We haveSnk�1(N) =MS(p�p�p)p2
2+k�1 (N)where the dire
t sum is taken over all possible 
hoi
es for the tuple(p�p�p)p2
2+. Using these de�nitions and Proposition 2.1, we 
an eas-ily prove the following fa
ts about the behavior of these subspa
esSp�p�pk�1 (N) under the a
tion of various operators as des
ribed in thefollowing:Proposition 2.4. Let N be a positive integer with ordp(N) � 2 forsome odd prime p. The subspa
es Sp�p�pk�1 (N) as de�ned above behaveunder the a
tion of the He
ke operators Tk�1(n), involution Wp, andtwisting operator Rp in the following way:(1) Sp�p�pk�1 (N) is 
losed under the a
tion of Tk�1(n) for �p; �p = �1and (n;N) = 1.(2) Sp�p�pk�1 (N) is 
losed under the a
tion of Wp for �p; �p = �1, .(3) Sp++k�1 (N) and Sp��k�1 (N) are both 
losed under the a
tion of Rp,while Sp+�k�1 (N) j Rp = Sp�+k�1 (N) and Sp�+k�1 (N) j Rp = Sp+�k�1 (N).An important 
onsequen
e of Proposition 2.4 is that Snk�1(N) is
losed under the a
tion of the appropriate He
ke operators, involutionsand twists. Moreover, we have the following:Proposition 2.5. Let the notation and terminology be as above. Thenea
h summand Snk�1(N(B;C)) j RB+C of Sn?k�1(N) is 
losed under thea
tion of Wp for ea
h odd prime p j N .Proof. Let F 2 Snk�1(N(B;C)) j RB+C , so that F = G j RB+C for someG 2 Snk�1(N(B;C)). First suppose p =2 B + C. Then p�p jj N(B;C),and we have F j Wp = G j RB+C j Wp = G j Wp j RB+C by (3)of Proposition 2.1. Sin
e G 2 Snk�1(N(B;C)), we 
an write G as alinear 
ombination of some Gp�p�p 2 Sp�p�pk�1 (N(B;C)). Ea
h subspa
eSp�p�pk�1 (N(B;C)) is 
losed under the a
tion of Wp by Proposition 2.4,hen
e Gp�p�p j Wp 2 Sp�p�pk�1 (N(B;C)) � Snk�1(N(B;C)). By linearity,G j Wp 2 Sp�p�pk�1 (N(B;C)) � Snk�1(N(B;C)) as well, and thereforeF jWp 2 Snk�1(N(B;C)) j RB+C .If p 2 B + C, then ordp(N(B;C)) = 0 if p 2 C or 1 if p 2 B.Put RB+C = RpRB+C�fpg. Thus by Proposition 2.1,



8 SHARON M. FRECHETTEF jWp = F jWp2 = G j Rp j RB+C�fpg jWp2= G j Rp jWp2 j RB+C�fpg = ��1p �G j Rp j RB+C�fpg= ��1p �G j RB+C = �G j RB+C = �F 2 Snk�1(N(B;C)) j RB+C�2.3. Equivalent Forms. The results in Se
tions 5 and 6 pertain tohalf-integral weight 
usp forms whi
h are equivalent to a given inte-gral weight newform F . We say that a newform F 2 S0k�1(2N;�2) isequivalent to a 
usp form f 2 Sk=2(4N;�) if f and F are both He
keeigenforms with 
orresponding eigenvalues equal for almost all primesp. That is, f j eTk=2(p2) = �pf and F j Tk�1(p) = �pF for almost all p,where �p 2 C. Let Sk=2(4N;�; F ) denote the subspa
e of Sk=2(4N;�)
onsisting of all forms equivalent to F . We have the following dire
tsum, Sk=2(4N;�) =MF Sk=2(4N;�; F )taken over all newforms F of levels dividing 2N .3. The De
ompositions at Level 4pmIn this se
tion we give expli
it means of 
onstru
ting de
ompositionsfor the spa
es Sk=2(4pm; �) for k � 5 (resp. V3=2(4pm; �) for k = 3). De-
ompositions were also 
omputed expli
itly for levels with two distin
todd prime divisors, and the regular stru
ture of these de
ompositionsillustrates quite well what should happen in the 
ase of general level4N . We dis
uss these more general levels in the remark at the end ofthis se
tion as well as in Se
tion 5.Theorem 3.1. Let the notation and terminology be as above, and leta; t, and u be integers with a � �1. For any spe
i�ed m and �, weexpli
itly 
onstru
t an isomorphism between Sk=2(4pm; �) for k � 5(resp. V3=2(4pm; �) for k = 3) and a dire
t sum of integral weight formswhi
h depends on m and �. This is an isomorphism as modules for theHe
ke algebra. The summands are (subspa
es of) S0k�1(2tpu) j RA for0 � t � 1 and 0 � u � m, where A = 1 or p (with R1 trivial). Forea
h su
h level and twist, 
onsult the table to determine the subspa
eand 
oeÆ
ient with respe
t to p. Then multiply ea
h 
oeÆ
ient by2 � t, and take the dire
t sum over all possible 
hoi
es of 0 � t � 1,0 � u � m, and A = 1 or p.



HECKE STRUCTURE OF SPACES OF CUSP FORMS 9Contribution at level 2tpu twisted by RACases Sum over: CoeÆ
ient: Subspa
e:m = 0 A = 1 u = 0 | � = 1 | 1 S0m = 2a + 3 A = 1 u > 0 even | either � �p; �p = �1 [2 + �p + �p��1p �℄(a+ 2� u2 ) Sp�p�p" " u � 3 odd | either � | 2a+ 4� u S0" " u = 0 or 1 | either � | 4a+ 6� u(a + 2) S0" A = p u = 0 or 1 | either � | (2 + (2 � u)��1p �)(a + 1) S0m = 2a + 4 A = 1 u > 0 even u = m, � = 1 �p = �1 2 Sp+�p" " " " � = � p� � �p; �p = �1 1 + �p��1p � Sp�p�p" " " u < m � = 1 �p; �p = �1 (a + 2� u)[2 + �p + �p��1p �℄ + (1 + �p) Sp�p�p" " " " � = � p� � �p; �p = �1 (a + 2� u)[2 + �p + �p��1p �℄ + (1 + �p��1p �) Sp�p�p" " u � 3 odd | either � | 2a+ 5� u S0" " u = 0 or 1 | � = 1 | 4a+ 8� u(a + 3) S0" " " | � = � p� � | 4a+ 8� u(a + 2) S0" A = p u = 0 or 1 m 6= 2 � = 1 | (2a + 3� u(a + 1))(1 + ��1p �) + u(a+ 1) S0 j Rp" " " " � = � p� � | (2a + 3� u(a + 2))(1 + ��1p �) + u(a+ 2) S0 j Rp" " " m = 2 � = 1 | 1 + ��1p � S0 j Rp" " " " � = � p� � | 1 + (1 � u)��1p � S0 j RpExample 3.2. By Theorem 3.1, for k � 5 and � = 1 or �p��, we have:Sk=2(4p3; �) �= 1Mt=0(2� t)(S0k�1(2tp3)� �3 + ��1p ��Sp++k�1 (2tp2)� �3� ��1p ��Sp+�k�1 (2tp2)� �1 + ��1p ��Sp�+k�1 (2tp2)� �1� ��1p ��Sp��k�1 (2tp2)�4S0k�1(2tp)� 6S0k�1(2t)� (2 + ��1p �)S0k�1(2tp) j Rp � 2(1 + ��1p �)S0k�1(2t) j Rp)Noti
e that exa
tly one of �1� ��1p �� is zero a

ording to the 
ongru-en
e of p modulo 4. Hen
e exa
tly one of the spa
es Sp��k�1 (2tp2) willbe \missing" from this isomorphism. Consequently, newforms in thatspa
e are not in the image of the Shimura lift from Sk=2(4p3; �). InSe
tion 5, we 
hara
terize those newforms in the Sn-spa
es whi
h arein the image of the Shimura lift from Sk=2(4N;�) for some odd positiveinteger N and some even quadrati
 Diri
hlet 
hara
ter � modulo 4N .Moreover, we give 
onditions under whi
h a newform in an Sn-spa
ehas no su
h preimage.



10 SHARON M. FRECHETTEProof of Theorem 3.1. The isomorphisms are obtained by manipulat-ing the following tra
e identities of Ueda's:Theorem 3.3. (Ueda) [14℄ Let N be a positive integer su
h that 2 �ord2(N) = � � 4 and put M = 2��N . Let � be an even quadrati
Diri
hlet 
hara
ter modulo N and suppose that the 
ondu
tor of � isdivisible by 8 if � = 4. Then for k � 5 and for all positive integers nwith (n;N) = 1 we have the following relation:tr� eTk=2(n2) j �Sk=2(N;�)�� = tr�Tk�1(n) j �Sk�1(N=2)��+XL0 �(n;L0)tr�WL0Tk�1(n) j �Sk�1(2��1L0L1)��and for k = 3 we have the following relation:tr� eT3=2(n2) j �V3=2(N;�)�� = tr�T2(n) j �S2(N=2)��+XL0 �(n;L0)tr�WL0T2(n) j �S2(2��1L0L1)��where(1) PL0 runs over all square divisors L0 of M with L0 > 1,(2) to ea
h L0 the 
orresponding L1 is given by L1 =MQpjL0 p�ordp(M),(3) and the 
onstant �(n; L0) is de�ned as follows:�(n; L0) =YpjM �(p; n; ordp(L0)=2) with�(p; n; a) = 8><>:1 if a = 01 + ��np � if 1 � a � hordp(N)�12 i�p(�n) if ordp(N) is even and a = ordp(N)2We handle the 
ase k � 5. All 
omputations when k = 3 are 
om-pletely analogous. We must 
onsider � = 1 or �p��, however if theexponent m is odd, the tra
e identity has no dependen
e on �.Case 1: m = 0 or 1. In this 
ase, N is square-free and the tra
eidentity in Theorem 3.3 be
omestr� eTk=2(n2) j �Sk=2(4N;�)�� = tr�Tk�1(n) j �Sk�1(2N)��yielding the isomorphism Sk=2(4N;�) �= Sk�1(2N) by appli
ation of(1). We then break Sk�1(2N) into a dire
t sum of newform spa
esa

ording to Proposition 2.2 in order to obtain the de
omposition.



HECKE STRUCTURE OF SPACES OF CUSP FORMS 11Case 2: m � 2. The de
ompositions for non-square-free levels areobtained by bootstrapping up from de
ompositions for lower levels. For
 � 1 and a � 0, de�ne the following expressions:D2
 = tr�eTk=2(n2) j �Sk=2(4p2
; 1)��� tr�eTk=2(n2) j �Sk=2(4p2
�1; �)��E2
 = tr�eTk=2(n2) j �Sk=2(4p2
;�p��)��� tr�eTk=2(n2) j �Sk=2(4p2
�1; �)��Fa = tr�eTk=2(n2) j �Sk=2(4p2a+3; �)��� tr�eTk=2(n2) j �Sk=2(4p2a+2; 1)��� tr� eTk=2(n2) j �Sk=2(4p2a+2;�p��)��+ tr�eTk=2(n2) j �Sk=2(4p2a+1; �)��Substituting appropriately for ea
h term using the tra
e identity inTheorem 3.3 yields signi�
ant 
an
ellation:D2
 = tr�Tk�1(n) j �Sk�1(2p2
)��� tr�Tk�1(n) j �Sk�1(2p2
�1)��+ tr�Wp2
Tk�1(n) j �Sk�1(2p2
)��E2
 = tr�Tk�1(n) j �Sk�1(2p2
)��� tr�Tk�1(n) j �Sk�1(2p2
�1)��+ ��np �tr�Wp2
Tk�1(n) j �Sk�1(2p2
)��Fa = tr�Tk�1(n) j �Sk�1(2p2a+3)��� 2tr�Tk�1(n) j �Sk�1(2p2a+2)��+ tr�Tk�1(n) j �Sk�1(2p2a+1)��We then redu
e these three expressions to ones involving tra
es ofonly He
ke operators a
ting on spa
es of newforms. For ea
h Tk�1(n)-term, this is done via Proposition 2.2. For ea
h term involving W -operators, we �rst apply the following:Proposition 3.4 (Ueda). [15℄ Let A, B be �nite sets 
onsisting ofprime numbers su
h that A \ B = ; and also let ap for p 2 A, and bqfor q 2 B be any non-negative integers. Then for a positive integer nprime to Qp2A papQq2B qbq , we have the following identity:tr�WATk�1(n) j �Sk�1(Yp2A pap Yq2B qbq )��= X(tp)p2A0�tp�[ap=2℄ X(uq )q2B0�uq�bq Yq2B(bq � uq + 1)tr�WATk�1(n) j �S0k�1(Yp2A pap�2tp Yq2B quq )��



12 SHARON M. FRECHETTEWe then eliminate all W -operators via Propositions 2.3 and 2.1, andin
orporate any 
oeÆ
ients of �np� into the tra
e terms via the follow-ing:Lemma 3.5. [6℄, [9℄ Let k;N;M be positive integers with k � 3, and let be a primitive Diri
hlet 
hara
ter modulo M . Let N 0 = l
m(N;M2).Then for (n;N 0) = 1, (n)tr�Tk�1(n) j �S0k�1(N)�� = tr�Tk�1(n) j �S0k�1(N) j R ��where we 
onsider S0k�1(N) j R as a submodule of Sk�1(N 0;  2).After 
olle
ting terms a

ording to level and subspa
e with respe
tto p, we have the following redu
ed expressions:D2
 = 1Xt=0(2� t)h2 
Xu=1 tr�Tk�1(n) j �Sp++k�1 (2tp2u) + Sp+�k�1 (2tp2u)��+ 
Xu=1 tr�Tk�1(n) j �Snk�1(2tp2u�1)��+ 2tr�Tk�1(n) j �S0k�1(2t)��+ �1 + ��1p ��tr�Tk�1(n) j �S0k�1(2tp) j Rp � S0k�1(2t) j Rp��iE2
 = 1Xt=0(2� t)h�1 + ��1p �� 
Xu=1 tr�Tk�1(n) j �Sp++k�1 (2tp2u)� Sp�+k�1 (2tp2u)��+ �1� ��1p �� 
Xu=1 tr�Tk�1(n) j �Sp+�k�1 (2tp2u) + Sp��k�1 (2tp2u)��+ 
Xu=1 tr�Tk�1(n) j �Snk�1(2tp2u�1)��+ tr�Tk�1(n) j �S0k�1(2tp)��+ 2tr�Tk�1(n) j �S0k�1(2t)��+ tr�Tk�1(n) j �S0k�1(2tp) j Rp��+ �1 + ��1p ��tr�Tk�1(n) j �S0k�1(2t) j Rp��iFa = 1Xt=0(2� t)tr�Tk�1(n) j �S0k�1(2tp2a+3)��When m = 2, if � = 1, rearrange the de�nition of D2 to obtaintr�eTk=2(n2) j �Sk=2(4p2; 1)�� = tr�eTk=2(n2) j �Sk=2(4p; �)��+D2Substitute the expression for tr�eTk=2(n2) j �Sk=2(4p; 1)�� from Case 1,along with the redu
ed expression for D2. Colle
t terms a

ording tolevel and subspa
e with respe
t to p to obtain a redu
ed expression



HECKE STRUCTURE OF SPACES OF CUSP FORMS 13for tr� eTk=2(n2) j �Sk=2(4p2; 1)��, and hen
e the de
omposition by (1).Similarly, use E2 when � = �p��.When m = 2a+ 3 for a � 0, rearranging the de�nition of Fa gives:tr� eTk=2(n2) j �Sk=2(4p2a+3; �)�� = Fa + tr� eTk=2(n2) j �Sk=2(4p2a+2; 1)��+ tr� eTk=2(n2) j �Sk=2(4p2a+2;�p��)��� tr�eTk=2(n2) j �Sk=2(4p2a+1; �)��Substituting for the level 4p2a+2 terms and then indu
ting on a � 0,we havetr� eTk=2(n2) j �Sk=2(4p2a+3; �)�� = aX
=0 hFa+D2a+2+E2a+2i+tr� eTk=2(n2) j �Sk=2(4p; �)��Substitute for tr� eTk=2(n2) j �Sk=2(4p; �)�� from Case 1 along with thesummands Fa, D2a+2, E2a+2, and 
olle
t terms a

ording to level andsubspa
e with respe
t to p. This gives the redu
ed expression fortr�eTk=2(n2) j �Sk=2(4p2a+3; �)��. The de
omposition follows.When m = 2a+ 4 for a � 0, the results again depend on the 
hoi
eof �. If � = 1, rearrange the expression for D2a+4 to obtain:tr�eTk=2(n2) j �Sk=2(4p2a+4; 1)�� = tr� eTk=2(n2) j �Sk=2(4p2a+3; �)��+D2a+4Then substitute for tr�eTk=2(n2) j �Sk=2(4p2a+3; �)�� and D2a+4, and
ombine terms as usual. Similarly, use E2a+4 if � = �p��. �Remark: If p and q are distin
t odd primes, the nature of the de
om-position at level 4pmqs was found to be the same with respe
t to p as itwas at level 4pm. This suggests that this de
omposition theorem maygeneralize to level 4N , N any odd positive integer; one would use thegiven table for ea
h distin
t p j N and then 
ombine the informationfor all su
h primes. De�ning terms like those used in Case 2, and usingthem to build up to level 4N one prime at a time, may lead to su
h ageneralization.4. Comparison to De
ompositions of the Kohnen Subspa
eThe de
ompositions given in Theorem 3.1 have a strong relationshipto the de
ompositions given by Ueda [14℄ for the Kohnen subspa
eSk=2(4pm; �)K when k � 5. Comparing our de
ompositions to Ueda's,we see pre
isely how the Kohnen subspa
e sits inside the full spa
e of
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usp forms. For example, with the notation and de�nitions as above,by Theorem 3.1 we have:Sk=2(4p2;�p��) �= 1Mt=0 (2� t)((1 + ��1p �)�Sp++k�1 (2tp2)� Sp+�k�1 (2tp2)	� (1� ��1p �)�Sp�+k�1 (2tp2)� Sp��k�1 (2tp2)	� 3S0k�1(2tp)� S0k�1(2tp) j Rp� 4S0k�1(2t)� (1 + ��1p �)S0k�1(2t) j Rp)while Ueda [14℄ gives the following de
omposition for the Kohnen sub-spa
e:Sk=2(4p2;�p��)K �= (1 + ��1p �)�Sp++k�1 (p2)� Sp+�k�1 (p2)	� (1� ��1p �)�Sp�+k�1 (p2)� Sp��k�1 (p2)	� 3S0k�1(p)� S0k�1(p) j Rp� 4S0k�1(1)� (1 + ��1p �)S0k�1(1) j RpFor levels dividing p2, the forms o

urring in the isomorphism for thefull spa
e are pre
isely those whi
h o

urred in Ueda's isomorphism forthe Kohnen spa
e, with their multipli
ities doubled. In addition, thestru
ture of the forms o

urring at level 2pu is parallel to the stru
-ture o

urring at level pu | the same subspa
es appear with the same
oeÆ
ients depending on p. The parallelism between our de
omposi-tions and Ueda's at any level 4pm indi
ates a beautiful stru
ture in therelationship between the Kohnen subspa
e and the full spa
e of 
uspforms. The regular stru
ture of the de
ompositions suggests that thisparallelism should extend to all levels.5. When Sk=2(4N;�; F ) is Nonzero for NewformsF 2 Snk�1(2tM)Throughout this se
tion, t = 0 or 1, M and N are odd positive inte-gers, 
M is an odd positive integer with the same prime fa
tors as M ,ea
h o

urring to odd exponent at least 3, and � and �0 are even qua-drati
 Diri
hlet 
hara
ters modulo the relevant levels. The dis
ussion
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uses on Sk=2(4N;�) for k � 5. All proofs are given for this 
ase,and analogous arguments hold for V3=2(4N;�) when k = 3. We give aseries of partial results regarding the stru
ture of the de
ompositionsfor Sk=2(4N;�) and V3=2(4N;�) whi
h provide signi�
ant informationabout the image of the Shimura lift. For all newforms F 2 Snk�1(2tM),these results lead to the following 
hara
terization, in terms of 
lassi
al
onditions, of whether F has equivalent half-integral weight 
usp formsof level 4N and 
hara
ter �:Corollary 5.1. With the notation and terminology as above, let F 2Snk�1(2tM). Then Sk=2(4N;�; F ) = f0g for all odd positive integers Nand all even quadrati
 Diri
hlet 
hara
ters � modulo 4N if and only ifthe following hold:(1) There is at least one prime p jM su
h that ordp(M) is even.(2) For any su
h prime p, either p � 1 (mod 4) and F 2 Sp��k�1 (2tM),orp � 3 (mod 4) and F 2 Sp�+k�1 (2tM).In 
ase Sk=2(4N;�; F ) 6= f0g, the minimal level for whi
h this o

ursis 4N = 4M .This 
orollary depends on several results given below: First, The-orem 5.2 takes the spa
e Snk�1(2tM) and tra
ks its \appearan
e" inthe de
omposition of Sk=2(4
M;�). This pie
e of the de
omposition ofSk=2(4
M;�) leads to Corollary 5.5 whi
h expli
itly gives the dimensionof Sk=2(4
M;�; F ) for all F 2 Snk�1(2tM); in parti
ular, it gives 
ondi-tions under whi
h this dimension is zero. Theorem 5.6 and Corollary5.7 then indi
ate the e�e
t of introdu
ing additional prime fa
tors intothe level.5.1. Subspa
es of Snk�1(2tM) Appearing in the De
ompositionof Sk=2(4
M;�). For any newform F 2 Snk�1(2tM), we 
an determinepre
isely the number of 
opies of F appearing in the de
omposition ofSk=2(4
M;�) (i.e. the dimension of Sk=2(4
M;�; F )):Theorem 5.2. Let t 2 f0; 1g and let M = Qp pbp be the produ
t ofdistin
t odd primes p to positive integer exponents bp. Split the primesdividing M into the following three sets: U = fp j M : bp = 1g, E =fp j M : bp � 2 is eveng, and O = fp j M : bp � 3 is oddg. Considerany 
M =QpjM pap with ap odd integers su
h that ap � maxf3; bpg andany even quadrati
 Diri
hlet 
hara
ter � modulo 4
M .



16 SHARON M. FRECHETTE(1) If E = ;, then for k � 5 the total 
ontribution of summands inthe de
omposition of Sk=2(4
M;�) whi
h are subspa
es of Snk�1(2tM)is: (2� t)Yp2U(3 hap2 i+ 1)Yp2O(ap + 1� bp)Snk�1(2tM)(2) If E 6= ;, then for k � 5 the total 
ontribution of summands inthe de
omposition of Sk=2(4
M;�) whi
h are subspa
es of Snk�1(2tM)is:(2�t)Yp2U(3 hap2 i+1)Yp2E(hap2 i+1�bp2 )Yp2O(ap+1�bp) Mp2E�p;�p=�1Yp2E 
p�p�pS(p�p�p)p2Ek�1 (2tM)where 
p�p�p = (2 + �p) + �p��1p �(3) Statements (1) and (2) hold for k = 3, with Sk=2(4
M;�) re-pla
ed by V3=2(4
M;�).Proof. We �rst isolate and simplify all terms in the tra
e identity forSk=2(4
M;�) whi
h give 
ontributions to Snk�1(2tM). We then show byindu
tion that these expressions redu
e to the stru
ture of 
oeÆ
ientsand subspa
es as given in the theorem.Sin
e ea
h ap is odd, the tra
e identity for Sk=2(4
M;�) is independentof the 
hoi
e of 
hara
ter �. Thus �(n; L0) =QpjL0(1+��np �) for ea
hsquare L0 j 
M with L0 > 1. Moreover, sin
e ea
h ap � 3, ea
h primedividing 
M (by 
onstru
tion, the primes dividingM) will o

ur in someL0. For 
onvenien
e, we group terms in the L0-sum of the tra
e identityby the set of prime divisors of L0. For subsets PU � U and PE � E , wewill be 
on
erned with terms for whi
h the set of prime divisors of L0 isPU [PE . We refer to these as the \PUPE -sums" in the tra
e identity. Inthe following proposition, we determine the 
ontribution to Snk�1(2tM)from these sums together with the Tk�1(n)-term.Proposition 5.3. Let the notation and terminology be as above, andlet A denote the set of prime divisors of M . For any subsets PE � Eand PU � U , we get a 
ontribution to Snk�1(2tM) from the PUPE-sum.The total 
ontribution to Snk�1(2tM) from these sums is given by:(2) (2� t)" XPU�U XPE�EKPU ;PE tr�WPETk�1(n) j �Snk�1(2tM)��#



HECKE STRUCTURE OF SPACES OF CUSP FORMS 17where KPU ;PE = Yp2PE "�1+��np ����ap2 �+1�bp2 �# Yp2PU �ap2 � Yp2Ap=2(PE[PU)(ap+1�bp)Proof. The 
ase PE = PU = ; 
orresponds to the Tk�1(n)-term in thetra
e identity. Redu
ing this by Proposition 2.2 and isolating the level2tM term yields(2� t)Qp2A(ap + 1� bp)tr�Tk�1(n) j �S0k�1(2tM)�� as desired.If PU = ; but PE 6= ;, by redu
ing ea
h PE -sum by Proposition 3.4and then simplifying, we 
an isolate the level 2tM term whi
h is:(2�t)" Yp2PE �(1 + ��np �)��ap2 �+ 1� bp2 �� Yp2A�PE(ap+1�bp)#tr�WPETk�1(n) j �S0k�1(2tM)��Sin
e S0k�1(2tM) = Snk�1(2tM) � Sn?k�1(2tM) and sin
e both pie
es are
losed under the a
tion ofWPE , applying Proposition 2.5 and dis
ardingall Sn?k�1(2tM) terms yields the desired expression. Moreover, we getno 
ontributions to Snk�1(2tM) from terms at levels other than 2tMin the PE -sums: For a �xed PE -sum, any 
ontributions to Snk�1(2tM)from a level other than 2tM would ne
essarily 
ome from a summandSnk�1(2tM) j RC � Sn?k�1(2tfM) for some fM > M , but only if 
oeÆ
ients�np� twisted in to \undo" the twist RC . The method of 
onstru
tion inProposition 2.3 pres
ribes fM =MQp2PU p for some nonempty PU � U ,with 
orresponding C = Qp2PU p. The Legendre symbol 
oeÆ
ientsappearing in our terms are all with respe
t to primes in PE however,so they will not a�e
t the twist RC .Now if PU 6= ;, write ePU = Qp2PU p. In this 
ase, 
ontributions toSnk�1(2tM) from the PUPE -sums arise only from summands Snk�1(2tM) jR ePU � Sn?k�1(2tM ePU): For ea
h term in a PUPE -sum, all primes p 2 PUwill o

ur to even exponents in the level. Therefore we 
annot obtainlevel 2tM dire
tly. Redu
ing ea
h PUPE -sum by Proposition 3.4 andsimplifying, we 
an isolate the level 2tM ePU term. By Propositions 2.5and 2.3, we 
an then isolate the Snk�1(2tM) j R ePU summand whi
h weredu
e by repeated appli
ation of Proposition 2.1 part (5) toYp2PU ���1p �+ �np��LPU ;PE tr�WPETk�1(n) j �Snk�1(2tM) j R ePU ��



18 SHARON M. FRECHETTEwhere LPU ;PE = Yp2PE ��1 + ��np ����ap2 �+ 1� bp2 �� Yp2PU �ap2 � Yp2Ap=2(PE[PU)(ap+1� bp).By Lemma 5.4 given below, the only term in Qp2PU ���1p � + �np��whi
h will \undo" the twist R ePU is Qp2PU �np�. Thus the expressionabove be
omes(2�t)"XPU XPE KPU ;PE tr�WPETk�1(n) j �Snk�1(2tM)��#+�twists of terms of level 2tM�We then dis
ard the twists of terms of level 2tM and take the sum overall subsets PE and PU to obtain the result. �The following generalization of Lemma 3.5 allows �np� to be \twistedin" when the tra
e expression still involves WQ operators (as above),provided p 6 jQ:Lemma 5.4. Let k;N;M;Q be positive integers with k � 3 and (Q; f ) =1, where f is the 
ondu
tor of  , a primitive Diri
hlet 
hara
ter mod-ulo M . LetN 0 = l
m(N;M2). Then for (n;N 0) = 1 we have:(1)  (n) tr�WQTk�1(n) j �S0k�1(N)�� = tr�WQTk�1(n) j �S0k�1(N) jR ��.(2)  (n) tr�WQTk�1(n) j �S0k�1(N) j R �� = tr�WQTk�1(n) j �S0k�1(N)��.Proof. Let [T ℄BB denote the matrix of an operator T in terms of a basis B.Choose a basis B = fF1; : : : ; Fdg of S0k�1(N) 
onsisting of normalizednewforms. One 
an show that C = fF1 j R ; : : : ; Fd j R g is then abasis of S0k�1(N) j R . Using Proposition 2.1 and multipli
ity-one, weexpli
itly 
ompute tra
e([WQTk�1(n)℄CC) = tr�WQTk�1(n) j �S0k�1(N) jR �� and tra
e([WQTk�1(n)℄BB) =  (n)tr�WQTk�1(n) j �S0k�1(N)��,showing them to be equal. This proves (1), and (2) follows sin
eF j Rp j Rp = F for all newforms F 2 S0k�1(N) and all p 2 
2 (see[11℄). �Proposition 5.3 handles 
ontributions to Snk�1(2tM) from the PUPE -sums. In fa
t, no other terms in the tra
e identity 
ontribute at thislevel: Using Proposition 3.4, we repla
e ea
h L0-sum with a sum ofterms in whi
h ea
h p j L0 o

urs to an even exponent in the levels.When looking for 
ontributions at level 2tM we 
an therefore disregard



HECKE STRUCTURE OF SPACES OF CUSP FORMS 19L0-terms where any prime p 2 O divides L0. Thus the expressionin Proposition 5.3 gives all 
ontributions to Snk�1(2tM) in the tra
eidentity of Sk=2(4
M;�). To 
omplete the proof of Theorem 5.2, we useindu
tion to show that eliminating the W -operators in (2) gives thestru
ture of 
oeÆ
ients and subspa
es as stated in the theorem.Case 1: E = ;. By Proposition 5.3, the 
ontributions to Snk�1(2tM)in the tra
e identity for Sk=2(4
M;�) are in this 
ase given by(2�t)Yp2O(ap+1�bp)" Yp2U ap+XPU  Yp2PU �ap2 � Yp2U�PU ap!#tr�Tk�1(n) j �Snk�1(2tM)��where PPU denotes the sum over all nonempty PU � U .To obtain the desired stru
ture, we need only show that"Yp2U ap +XPU  Yp2PU �ap2 � Yp2U�PU ap!# =Yp2U �3�ap2 �+ 1� :This is done by indu
ting on jUj, noting that ap = 2�ap2 � + 1 sin
e apis odd.Case 2: E 6= ;. Due to te
hni
alities in the indu
tion, we prove amore general result. For any positive integers R and Q with (R;M) = 1and WQ de�ned on Snk�1(2tMR), we show that for all nonnegativeintegral 
hoi
es of e = jEj; o = jOj; and u = jUj, the following equalityholds:(3) (2� t)"XPE KPE tr�WQWPETk�1(n) j �Snk�1(2tMR)��+XPU XPE KPU ;PE tr�WQWPETk�1(n) j �Snk�1(2tMR)��#= (2� t)Yp2U(3�ap2 �+ 1)Yp2E ��ap2 �+ 1� bp2 � Yp2O(ap + 1� bp)� Xp2E�p;�p=�1Yp2E 
p�p�ptr�WQTk�1(n) j �S(p�p�p)p2Ek�1 (2tMR)��The theorem then follows by setting R = Q = 1. We prove (3) byindu
ting on both e and u. When indu
ting on e, the base 
ase e = 0for all u � 0 and o � 0 is proved using an indu
tion on u analogous tothe one used in Case 1. Now assume (3) holds for all 0 � ` < e, u � 0;and o � 0. Separate o� one prime q 2 E and write E = E 0 [ fqg. Split



20 SHARON M. FRECHETTEthe subsets PE into two types: (1) PE = PE 0 � E 0 (in
luding ;), and (2)PE = PE 0 [fqg for some PE 0 as in (1). Rewrite the left-hand side of (3)in terms of PE 0:(2� t)"(aq + 1� bq)(�XPE0 KPE0 +XPU XPE0 KPU ;PE0�tr�WQWPE0Tk�1(n) j �Snk�1(2tMR)��)+��aq2 �+1� bq2 �(�XPE0 KPE0 +XPU XPE0 KPU ;PE0��1 + ��nq ��tr�WQWqWPE0Tk�1(n) j �Snk�1(2tMR)��)#
Write MR =M 0R0 where R0 = qbqR and M 0 =Mq�bq , and 
onsiderthe operatorsWQ andWq together asWQ0. M 0 has E 0 as its set of primedivisors o

urring to even exponents, with jE 0j = e � 1 < e. Thus byindu
tion the expression above equals(2� t)Yp2U(3�ap2 �+ 1) Yp2E0 ��ap2 �+ 1� bp2 � Yp2O(ap + 1� bp)� Xp2E0�p;�p=�1 Yp2E0 
p�p�p"(aq + 1� bq)tr�WQTk�1(n) j �S(p�p�p)p2E0k�1 (2tMR)��+��aq2 �+ 1� bq2 ��1 + ��nq ��tr�WQWqTk�1(n) j �S(p�p�p)p2E0k�1 (2tMR)��#All that remains is to eliminate the Wq-operator and 
ombine theterms in bra
kets. De
ompose ea
h subspa
e S(p�p�p)p2E0k�1 (2tMR) into adire
t sum of four subspa
es S(p�p�p)p2E0 ;q�q�qk�1 (2tMR), with �q; �q = �1.Simplify the expression using Propositions 3.5 and 2.1, and then noti
ethat the subspa
es S(p�p�p)p2E0 ;q�q�qk�1 (2tMR) are pre
isely S(p�p�p)p2Ek�1 (2tMR),and the two sums 
ombine to sum over all p 2 E with the appropriate
oeÆ
ients and subspa
es. We therefore obtain the right-hand side of(3) This 
ompletes the proof of Theorem 5.2. �5.2. The Dimension of Sk=2(4
M;�; F ).Corollary 5.5. Let the notation and terminology be as in Theorem 5.2and letF 2 Snk�1(2tM) be a newform. The dimension of the spa
e Sk=2(4
M;�; F )is given in the following expressions:



HECKE STRUCTURE OF SPACES OF CUSP FORMS 21Case 1: If E = ;, thendim(Sk=2(4
M;�; F )) = (2� t)Yp2U �3 hap2 i+ 1� Yp2O(ap + 1� bp)Case 2: If E 6= ;, then a

ordingly as F 2 S(p�p�p)p2Ek=2 (2tM),dim(Sk=2(4
M;�; F )) = (2�t)Yp2U �3 hap2 i+1�Yp2E � hap2 i+1�bp2 � Yp2O(ap+1�bp)Yp2E 
p�p�pProof. Case 1 follows immediately from Theorem 5.2. On
e it is estab-lished that any newform F 2 Snk�1(2tM) belongs to one of the subspa
esS(p�p�p)p2Ek�1 (2tM), Case 2 will also follow from the theorem. A priori,F may be a linear 
ombination of forms in these subspa
es. However,sin
e F is a newform, by Theorem 3 of [1℄ we have F j Wp = �pF , forsome 
hoi
e of �p = �1 for ea
h p 2 E . Sin
e F j Rp is also a newformby Theorem 6 of [1℄, applying Theorem 4 of [1℄ to F j Rp shows thatF j Rp j Wp = �pF j Rp for some 
hoi
e of �p = �1 for ea
h p 2 E .Thus we have F 2 S(p�p�p)p2Ek=2 (2tM) for some tuple (p�p�p)p2E . �5.3. The Minimal Level for whi
h Sk=2(4N;�; F ) May Be Non-trivial. For a newform F 2 S0k�1(2tM), we say \F appears (resp. doesnot appear) in the de
omposition of Sk=2(4N;�)" if F is (resp. is not)an element of a summand in the isomorphism for Sk=2(4N;�).Theorem 5.6. Let k;M and N be odd positive integers su
h that M jN and k � 3. Let t 2 f0; 1g and 
onsider a newform F 2 S0k�1(2tM).Let q be an odd prime su
h that q 6 jM , and require that �p = ordp(N) �3 be odd for all p j N with p 6= q. Finally, let � (resp. �0) be any evenquadrati
 Diri
hlet 
hara
ter modulo 4N (resp. 4Nq). For k � 5(resp. k = 3), if F does not appear in the de
omposition of Sk=2(4N;�)(resp. V3=2(4N;�)), then F does not appear in the de
omposition ofSk=2(4Nq; �0) (resp. V3=2(4Nq; �0)).Before giving the proof of Theorem 5.6, we state and prove the fol-lowing:Corollary 5.7. Let M and t be as above, and 
onsider a newformF 2 S0k�1(2tM). For k � 5 (resp. k = 3), if F does not appear inthe de
omposition of Sk=2(4
M;�) (resp. V3=2(4
M;�)) for any positiveinteger 
M = QpjM p�p with odd integers �p � 3, and for any evenquadrati
 Diri
hlet 
hara
ter modulo 4
M , then F does not appear in thede
omposition of Sk=2(4N;�0) (resp. V3=2(4N;�0)) for any odd positiveinteger N and any even quadrati
 Diri
hlet 
hara
ter �0 modulo 4N .



22 SHARON M. FRECHETTEProof. We further abbreviate the statement \F appears (resp. doesnot appear) in the de
omposition of Sk=2(4N;�)" as \F appears (resp.does not appear) in Sk=2(4N;�)". Let F 2 S0k�1(2tM). If M 6 jN ,then F 
learly 
annot appear in Sk=2(4N;�), so suppose M j N . WriteN =M 0q�11 � � � q�rr , splitting o� all primes qi not dividingM , where �i =ordqi(N) for i = 1; : : : ; r. There is no 
hara
ter-dependen
e in the tra
eidentity when the prime exponents are odd, so put bN = 
Mq�11 � � � q�rr ,with 
M =QpjM 0 p�p where �p � max f3; ordp(M 0)g and odd.By hypothesis, F does not appear in Sk=2(4
M;�) for any even qua-drati
 Diri
hlet 
hara
ter � modulo 4
M , so by repeated appli
ation ofTheorem 5.6 on the primes qi, F does not appear in Sk=2(4 bN; ) for anyeven quadrati
 Diri
hlet 
hara
ter  modulo 4 bN . Sin
e N j bN and theyhave the same prime fa
tors, any even quadrati
 Diri
hlet 
hara
ter �0modulo 4N 
an be obtained from a 
hoi
e of  , viewed as a 
hara
termodulo 4N . The usual 
ontainment relations among spa
es of modularforms then show that F does not appear in Sk=2(4N;�0). �Proof of Theorem 5.6. Suppose a newform F 2 S0k�1(2tM) does notappear inSk=2(4N;�), for some odd positive integer N and some even quadrati
Diri
hlet 
hara
ter modulo 4N . Let q be an odd prime su
h that q 6 jM ,and let �q = ordq(N).Case 1: �q = 0. Using Theorem 3.3 and methods previously dis-
ussed, one 
omputes thattr� eTk=2(n2) j �Sk=2(4N;�)�� = Xdj2N Æ (2N=d) tr�Tk�1(n) j �S0k�1(d)��+ X0L0 CL0;uptr�WL0Tk�1(n) j �S0k�1(2tNtp;up)��andtr� eTk=2(n2) j �Sk=2(4Nq; �0)�� = 1Xv=0(2�v)h Xdj2N Æ (2N=d) tr�Tk�1(n) j �S0k�1(dqv)��+ X0 CL0;uptr�WL0Tk�1(n) j �S0k�1(2tqvNtp;up)��iwhere(1) X0L0 denotes the followingmultiple sum: Xsquares L01<L0jN XpjL00�tp�[ap2 ℄ Xpj2L10�up�bp.



HECKE STRUCTURE OF SPACES OF CUSP FORMS 23(2) CLo;up and Ntp;up are de�ned as follows: For ea
h L0, put ap =ordp(K0) for ea
h prime dividing p j L0 and put bp = ordp(2K1)for ea
h prime p j 2L1. For integers tp and up with 0 � up � bpand 0 � tp � �ap2 �, putCL0;up =YpjL0�1 + ��np �� Ypj2L1(bp�up+1) and Ntp;up =YpjL0 p2tp Ypj2L1 pupThese two tra
e identities are almost identi
al; the main distin
tionis the appearan
e of qv in the levels in the se
ond. The de
ompositionS0k�1(2tqvNtp;up) = Snk�1(2tqvNtp;up) � Sn?k�1(2tqvNtp;up) is blind to qv,sin
e v = 0 or 1 and only prime divisors with exponents equal to 2a�e
t the nature of Sn. Therefore, the redu
tion of the respe
tive tra
eterms to eliminate allW -operators will be parallel, with the fa
tor of qv\along for the ride" in the levels of the se
ond identity. Therefore, sin
eF does not appear in Sk=2(4N;�), when we introdu
e the additionalprime q into the level and look at the v = 0 terms in the tra
e expressionfor Sk=2(4Nq; �0), we see that F does not appear in Sk=2(4Nq; �0).Case 2: �q = 2b + 1 for some nonnegative integer b. We provethat if F does not appear in Sk=2(4N;�), then F does not appear inSk=2(4Nq2; �00) for any even quadrati
 Diri
hlet 
hara
ter �00 modulo4Nq2, in order to avoid the issue of 
hara
ter-dependen
e in the tra
eidentity. Then by the usual 
ontainment relations, F does not appearin Sk=2(4Nq; �0).In transforming the tra
e identity for tr� eTk=2(n2) j �Sk=2(4N;�)��into an isomorphism for Sk=2(4N;�), we must 
ombine 
ertain terms todetermine the summands at any spe
i�ed level. The way in whi
h theseterms 
ombine produ
es Legendre symbol fa
tors in the 
oeÆ
ientswhi
h depend on the level, and gives us some 
onstant multiple of thebasi
 \building blo
k" of forms o

urring at that level. PutPN;q2 = tr� eTk=2(n2) j �Sk=2(4Nq2; �00)��� tr� eTk=2(n2) j �Sk=2(4N;�)��:Then tr� eTk=2(n2) j �Sk=2(4Nq2; �00)�� = PN;q2+tr�eTk=2(n2) j �Sk=2(4N;�)��.To relate the de
ompositions of Sk=2(4Nq2; �00) and Sk=2(4N;�), wemust 
ompare the stru
ture of the expressions for tr�eTk=2(n2) j �Sk=2(4N;�)��and PN;q2 in terms of newforms. In parti
ular, we must show that inadding PN;q2 to tr� eTk=2(n2) j �Sk=2(4N;�)��, we add a 
onstant mul-tiple of the entire \building blo
k" at any spe
i�ed level in order toprove that we introdu
e no additional forms.We introdu
e abbreviated notation whi
h 
ondenses the tra
e expres-sions, yet still illustrates the behavior at ea
h level. Write N = N 0q2b+1



24 SHARON M. FRECHETTE(so that q 6 jN 0) and put 
p = ordp(2N 0) for ea
h prime p j 2N 0. Forintegers v with 0 � v � 2b + 3, de�neXN 0;v = Xpj2N00�up�bp Ypj2N 0(
p � up + 1)tr�Tk�1(n) j �S0k�1(qv Ypj2N 0 pup)��+X0L0 CL0;uptr�WL0Tk�1(n) j �S0k�1(qvNtp;up)��with X0L0 , CL0;up and Ntp;up as in Case 1. Sin
e our expressions willoften di�er only by an additional W -operator, also de�neWQ [XN 0;v℄ = Xpj2N00�up�bp Ypj2N 0(
p � up + 1)tr�WQTk�1(n) j �S0k�1(qv Ypj2N 0 pup)��+X0L0 CL0;uptr�WQWL0Tk�1(n) j �S0k�1(qvNtp;up)��Lemma 5.8. With the abbreviated notation and terminology as above,we have the following expressions in terms of newforms:tr� eTk=2(n2) j �Sk=2(4N;�)�� = 2b+1Xv=0 (2b�v+2)XN 0;v+�1+��nq ��hbXN 0;0+ bXv=1(b�v+1)Wq2v [XN 0;2v℄ iandPN;q2 = XN 0;2b+3 + 2 2b+2Xv=0 XN 0;v + �1 + ��nq ��hXN 0;0 + b+1Xv=1Wq2v [XN 0;2v℄ iProof. By Theorem 3.3,tr� eTk=2(n2) j �Sk=2(4N;�)�� = tr�Tk�1(n) j �Sk�1(2N)��+XL00 YpjL00 �1 + ��np ��tr�WL00Tk�1(n) j �Sk�1(2L00L01)��where L00 runs over all squares 1 < L00 j N with 
orresponding L01 =NQpjL00 p�ordp(N). Let L0 denote a square divisor of N 0 with L0 6=1, and put L1 = N 0QpjL00 p�ordp(N). We then have L00 = L0; q2`; orL0q2` for some L0 and some ` = 1; 2; : : : ; b, with 
orresponding L01 =L1q2b+1; N 0; or L1 respe
tively. After rewriting the tra
e expressionabove in terms of L0, straightforward 
omputation using Proposition2.2 yields the desired expression. The proof for PN;q2 is analogous. �



HECKE STRUCTURE OF SPACES OF CUSP FORMS 25Noti
e that the terms �1 + ��nq ��Wq2b+2 [XN 0;2b+2℄ + 2XN 0;2b+2 +XN 0;2b+3 appear in PN;q2 but not in tr� eTk=2(n2) j �Sk=2(4N;�)��. Asidefrom these terms, we are adding 
onstant multiples of existing terms,with the 
onstants independent of 2N 0. It remains to show the following
laims:(1) The terms �1 + ��nq ��Wq2b+2 [XN 0;2b+2℄ + 2XN 0;2b+2 +XN 0;2b+3give no 
ontribution at levels dividing 2N 0.(2) For terms in tr�eTk=2(n2) j �Sk=2(4N;�)�� giving 
ontributionat any parti
ular level dividing 2N 0, we have added the same
onstant multiple of ea
h term, thus preserving the stru
ture ofthe de
omposition at that level.Let d be a positive divisor of 2N 0. Sin
e S0k�1(d) j Rq � S0k�1(dq2) andone pie
e of the 
oeÆ
ient �1 + ��nq �� \twists in" to eliminate the Rqtwist, we will get 
ontributions at level d from the term �1 + ��nq ��Wq2 [XN 0;2℄.Clearly we also get 
ontributions at level d from the term XN 0;0. How-ever, XN 0;2v for v 6= 0 and �1 + ��nq ��Wq2v [XN 0;2v℄ for v 6= 1 involveonly terms whose levels are divisible by q. Thus they give no 
ontribu-tions at levels dividing 2N 0. This proves the �rst 
laim.To prove the se
ond 
laim, we need the followingLemma 5.9. With the notation and terminology as above, we have�1 + ��nq ��Wq2 [XN 0;2℄ = XN 0;0 + E(q; Rq)where E(q; Rq) is a sum of terms of levels divisible by q and/or twistedby Rq, hen
e no terms in E(q; Rq) 
ontribute at levels dividing 2N 0.Proof. We haveS0k�1(q2 Ypj2N 0 pup) = M
2=A+B+C Snk�1(N(B;C)) j RB+Cwith 
2 and N(B;C) as in Proposition 2.3. Our interest is limitedto those summands where q 6 jN(B;C), for only these will give 
on-tributions at levels dividing 2N 0. By 
onstru
tion, q 6 jN(B;C) o

ursonly when q 2 C. After the usual manipulations to eliminate the Wq2-operators and twist in 
oeÆ
ients of �nq�, and after separating outterms involving subspa
es Snk�1(N(B;C)) j RB+C where q j N(B;C),we have:



26 SHARON M. FRECHETTE�1 + ��nq ��Wq2 [XN 0;2℄= Xpj2N00�up�bp Ypj2N 0(bp � up + 1) tr�Tk�1(n) j � M
2=A+B+Cq2C Snk�1(N(B;C)) j RB+C�fqg��+ X0L0 CL0;up tr�WL0Tk�1(n) j � M
02=A0+B0+C0q2C0 Snk�1(N(B0; C 0)) j RB0+C0�fqg��+E(q; Rq)with E(q; Rq) as above. The set of partitions 
2 = A + B + C withq 2 C is pre
isely the set of partitions of 
2 � fqg. ThusM
2=A+B+Cq2C Snk�1(N(B;C)) j RB+C�fqg = S0k�1( Ypj2N 0 pup)The dire
t sum over partitions of 
02 is handled similarly, and by thede�nition of XN 0;0, we obtain the result. �By Lemmas 5.8 and 5.9, we see that adding the expression in termsof newforms for PN;q2 to that for tr�Tk�1(n) j �Snk�1(4N)���, we add3b + 5 
opies of XN 0;0 to the existing b + 1 
opies. Therefore we haveadded the same 
onstant multiple of ea
h term at any level dividing2N 0, with the 
onstants being independent of 2N 0 (note that XN 0;0 isthe aforementioned \building blo
k").Case 3: �q = 2b + 2 for some nonnegative integer b. Write N =N 0q2b+2. F does not appear in Sk=2(4N;�00) = Sk=2(4N 0q2b+2; �00) forany even quadrati
 �00, hen
e by 
ontainment relations, F does notappear in Sk=2(4N 0q2b+1; �0) for any even quadrati
 �0. Then F doesnot appear in Sk=2(4N 0q2b+3; �) = Sk=2(4Nq; �) for any even quadrati
� by 
ase 2. This 
ompletes the proof of Theorem 5.6. �5.4. Conne
tions Between These Results and Fli
ker's The-orem. Restri
ting our attention to Sn(2tM), Theorem 5.2 allows usto identify 
ertain forms whi
h are \missing" from de
ompositions forSk=2(4
M;�). For example, when p � 1 (mod 4), any subspa
es with a
oeÆ
ient of 1���1p � will not appear. These will also be missing fromSk=2(4N;�) for any odd N and any even quadrati
 Diri
hlet 
hara
ter� modulo 4N , by Corollary 5.7. As a 
onsequen
e, Corollary 5.1 
har-a
terizes in terms of 
lassi
al invariants those integral weight newformsF 2 Snk�1(2tM) whi
h have equivalent half-integral weight 
usp formsat some level 4N with N odd. This is a partial reformulation of arepresentation-theoreti
 result of Fli
ker's [5℄ regarding Sk=2(4N;�; F ):
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ker℄ [5℄ Let (H1) denote the following 
ondition on thepth 
omponents �p of the automorphi
 representation � asso
iated toF : For all primes p su
h that �p is of the prin
ipal series, �1;p(�1) =�2;p(�1) = 1, where �1;p and �2;p denote the 
hara
ters of Q�p su
hthat �p � �(�1;p; �2;p). Then there exists N with Sk=2(4N;�; F ) 6= f0gif and only if (H1) is satis�ed.We have rephrased these representation-theoreti
 
onditions in termsof the prime-powers in the level of the form F and in terms of theWq-eigenspa
e for F with respe
t to those primes o

urring with evenexponent. At present, we have reformulated Fli
ker's theorem only inthe 
ase F 2 Snk�1(2tM), sin
e Theorem 5.2 and Corollary 5.5 onlyheld for newforms in Snk�1(2tM). However, 
areful examination of thefull de
ompositions when M has one or two distin
t prime fa
tors re-vealed 
ertain patterns in the appearan
e of the twist terms. Eviden
esuggests that the appearan
e of subspa
es of Sn?k�1(2tM) in the de
om-position of Sk=2(4
M;�) may follow a pattern similar to the one observedat level 4pm:Re
all that for any 
hoi
e of nonempty subset B � 
2, the spa
eSn?k�1(2tM) 
ontains summands Snk�1(2tYq2B q�q Yp2A�B pbp) j RB where Ais the set of prime divisors of M , �q = 0 or 1, and RB = RQq2B q. Theeviden
e dis
ussed above suggests the following:(1) When E = fp jM : bp � 2 is eveng = B, the entire spa
eSnk�1(2tYq2B q�q Yp2A�B pbp) j RE � Sn?k�1(2tM) should appear inthe de
omposition of Sk=2(4
M;�). Its 
oeÆ
ient stru
ture withrespe
t to U = fp j M : bp = 1g and O = fp j M : bp �3 is oddg should parallel that of 
ase (1) in Theorem 5.2. Ad-ditionally, we expe
t some Legendre symbol 
oeÆ
ients withrespe
t to E to o

ur.(2) When E 6= B, subspa
es S(p�p�p)p2E�Bk�1 (2tprodq2Eq�q Yp2A�B pbp) jE�Sn?k�1(2tM) should appear in the de
omposition of Sk=2(4
M;�).Their 
oeÆ
ient stru
ture with respe
t to U and O should par-allel that of 
ase (2) in Theorem 5.2. Additionally, we expe
tdi�erent Legendre symbol 
oeÆ
ients with respe
t to B andE �B.The theory 
ontained in this se
tion also has a 
onne
tion to an im-portant result of Waldspurger's: When (H1) is satis�ed, Waldspurger



28 SHARON M. FRECHETTE[17℄ gives a means of 
onstru
ting Sk=2(4N;�; F ) expli
itly, by �rstidentifying eN , the minimal N for whi
h this spa
e is nonzero, andthen analyzing 
ases depending on eN and the level of F . There aremany 
ases to 
onsider, and the 
onditions given in some 
ases involvea great deal of 
omplexity. Alternatively, we determine eN in terms ofthe subspa
e S(p�p�p)p2Ek�1 (2tM) to whi
h F belongs.6. Examples: Non-zero Newforms F with Sk�1(4N;�; F ) = 0Our results raise the following question: Do the \missing subspa
es"have positive dimension? That is, are there nonzero forms whi
h arenot in the image of the Shimura lift for Sk=2(4N;�) for any odd posi-tive integer N and any even quadrati
 Diri
hlet 
hara
ter �? We giveexamples when k = 3 whi
h show that the answer is yes. These are
omputed using Cremona's tables [4℄ whi
h list the following identify-ing information for rational newforms F 2 S0k�1(M):(1) The He
ke eigenvalues �p of F for T2(p) when p 6 jM and p �100.(2) The eigenvalues, either +1 or �1, of F for Wq when q jM andq � 100.To utilize this information, suppose F (z) = P1n=1 a(n)e2�inz is anormalized newform in S0k�1(M). For a prime p j M , we then haveF j Rp = P1n=1 b(n)e2�inz where b(n) = �np�a(n). If pjM , b(n) = 0.Otherwise, 
orresponding a(n) and b(n) 
an di�er only in sign, andwill di�er pre
isely when n is a quadrati
 non-residue modulo p. Sin
ea(n) = �n, the eigenvalue of F for the He
ke operator T2(n), we havea relationship between the He
ke eigenvalues of F and those of F j Rp.We 
an therefore make use of the eigenvalue information in the tablesto determine whether F 2 Sn2 (M) or F is the twist of some newformof lower level. Moreover, if F 2 Sn2 (M), we 
an then determine thesubspa
e of Sn2 (M) to whi
h F belongs with respe
t to a prime p j M(i.e. whether F 2 Sp++2 (M), et
.).Example 6.1. Using this method, we have dim(S13��2 (338)) � 2:Cremona lists 6 distin
t rational newforms of level 338, 
alled 338Athrough 338F , so dim(S2(338)) � 6. In 
omparing the He
ke eigenval-ues of 338A through 338F to the 
orresponding eigenvalues of the formslisted at level 26 = 2 � 13, we see that 338C and 338F are both twists byR13 of newforms of level 26. Investigation of the He
ke eigenvalues asabove shows that 338A j R13 = 338B and 338D j R13 = 338E, so thesefour are in Sn2 (338). Che
king the sign of the W13-eigenvalue for ea
h



HECKE STRUCTURE OF SPACES OF CUSP FORMS 29form, we �nd that 338A and 338B are in S13++2 (338), while 338D and338E are in S13��2 (338). Thus dim(S13��2 (338)) � 2.Example 6.2. Similarly, we have dim(S19�+2 (722)) � 1.We have given examples of missing subspa
es with positive dimen-sion, of both the p�� and p�+ types. In 
omputing with Cremona'stables for forms in S02(p2) with p an odd prime less than 100, it was notpossible to show that any of the missing spa
es had positive dimen-sion. However, extended tables for levels 1001 � N � 5000 given onCremona's webpage led to the 
omputations that dim(S37��2 (372)) � 2and dim(S43�+2 (432)) � 1. Cremona's tables deal only with rationalnewforms, and with more 
omplete information it may be possible toobtain examples at levels p2 for smaller primes.7. Con
lusionIn this paper, we have examined the He
ke stru
ture of spa
es ofhalf-integral weight 
usp forms by \looking ba
kwards" through theShimura 
orresponden
e. Our partial de
ompositions for Sk=2(4N;�)and V3=2(4N;�) gave important information about the image of theShimura lift. De
ompositions in 
ertain 
ases illustrated the relation-ship between the Kohnen subspa
e and the full spa
e of 
usp forms.Certain results were restri
ted to newforms in Snk�1(2tM) for t = 0; 1andM an odd positive integer, although possible methods for obtaininganalogous results for newforms F 2 Sn?k�1(2tM) were dis
ussed.Several interesting question are raised by these results. First, areall the missing spa
es of newforms in these de
ompositions positive-dimensional? (we have seen some examples in Se
tion 6). Sin
e thetra
e of the He
ke operator T1 on any spa
e S of integral weight 
uspforms is equal to the dimension of S, 
omputing the tra
e of T1 onSp��k�1 (2tM) and Sp�+k�1 (2tM) 
an provide the answer. This 
omputationis 
urrently being pursued, using the formulas for tra
es of Tn and ofthe 
omposition WpTn on S0k�1(2tM) given in Ross [10℄ and Yamau
hi[18℄ respe
tively.Se
ond, is the Shimura lift always non-surje
tive? Determining di-mensions of the missing spa
es of newforms in general may provideadditional examples of non-surje
tivity for other values of k when N isodd. Additionally, extending our de
ompositions to the 
ase of arbi-trary N would be a step towards answering this question. This wouldrequire additional tra
e identities, as Theorem 3.3 is only equipped to



30 SHARON M. FRECHETTEhandle levels where ord2(N) is at most two. Tra
e relationships han-dling almost all 
ases of ord2(N) are given by Ueda in [16℄, and 
ouldbe used to obtain su
h de
ompositions via similar methods.Perhaps most interestingly, what exa
tly is the signi�
an
e of the�1-eigenspa
e of the Wp operator? Our results indi
ate that forms inthis eigenspa
e for some p dividing their level may not have equivalenthalf-integral weight forms. To gain insight into this question we appealto the theory of L-series: The sign in the fun
tional equation for theDiri
hlet L-series L(F; s) asso
iated to an integral weight form F 2S0k�1(N) is determined by the Fri
ke involution HN , a 
omposition ofWp operators for all p j N . When this sign is �1, L(F; s) vanishesfor the value of s in the 
enter of the 
riti
al strip. If F has weight2 and integral 
oeÆ
ients, it 
an be shown that L(F; s) = L(E; s)for some ellipti
 
urve E over Q, and the Bir
h{Swinnerton-Dyer [3℄
onje
ture states that the rank of the asso
iated ellipti
 
urve E isequal to the order of vanishing in the fun
tional equation for L(E; s).The �1-eigenspa
e of Wp plays a role in these vanishings, and we hopeto develop a greater understanding of this role.Referen
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