
HECKE STRUCTURE OF SPACES OFHALF-INTEGRAL WEIGHT CUSP FORMSSHARON M. FRECHETTEAbstrat. We investigate the onnetion between integral weightand half-integral weight modular forms. Building on results ofUeda [14℄, we obtain struture theorems for spaes of half-integralweight usp forms Sk=2(4N;�) where k and N are odd nonnegativeintegers with k � 3, and � is an even quadrati Dirihlet haratermodulo 4N . We give omplete results in the ase where N is apower of a single prime, and partial results in the more generalase. Using these struture results, we give a lassial reformula-tion of the representation-theoreti onditions given by Fliker [5℄and Waldspurger [17℄ in results regarding the Shimura orrespon-dene. Our version haraterizes, in lassial terms, the largestpossible image of the Shimura lift given our restritions on N and�, by giving onditions under whih a newform has an equiva-lent usp form in Sk=2(4N;�). We give examples (omputed usingtables of Cremona [4℄) of newforms whih have no equivalent half-integral weight usp forms for any suh N and �. In addition,we ompare our struture results to Ueda's [14℄ deompositions ofthe Kohnen subspae, illustrating more preisely how the Kohnensubspae sits inside the full spae of usp forms.1. IntrodutionA vital part of the theory of integral weight modular forms is thestudy of simultaneous Heke eigenforms, in partiular newforms. Thelassial \multipliity-one" result says that a newform is expliitly de-termined up to onstant multiple by its eigenvalues for almost all theHeke operators Tk(p), p a prime, k a positive integer. If we attemptto de�ne \half-integral weight newforms" using a de�nition analogousto that for integral weight, the theory breaks down rapidly, the ruialpoint being the lak of a multipliity-one result. There are howeversigni�ant onnetions between integral weight Heke eigenforms andhalf-integral weight Heke eigenforms, most notably the Shimura orre-spondene [12℄. This orrespondene maps Heke eigenforms to HekeDate: November 7, 2004.1991 Mathematis Subjet Classi�ation. 11F37, 11F32, 11F11.1



2 SHARON M. FRECHETTEeigenforms, whih suggests that our knowledge of the integral weightstruture an be \transported" to knowledge about half-integral weightforms. Through a representation-theoreti approah, Shintani [13℄ pro-vides a mapping whih is an adjoint to the Shimura lift and also pre-serves Heke eigenforms. Unfortunately, the image of the Shintani mapmay be trivial, so it does not neessarily a�ord a pratial method oftransporting the Heke struture bak.A promising alternative is to use trae identities to give deompo-sitions of the spaes of usp forms Sk=2(4N;�) whih illuminate theirHeke struture. These deompositions take the form of isomorphismsbetween Sk=2(4N;�) and diret sums of spaes of integral weight new-forms; the isomorphisms are as modules for the respetive algebrasgenerated by the Heke operators ating on half-integral weight and in-tegral weight usp forms. Theorem 3.1 gives suh deompositions whenN is the power of a single odd prime and � is even and quadrati. InSetion 4 we ompare these deompositions to Ueda's deompositions[14℄ of the Kohnen subspae, showing more preisely how this subspaesits inside the full spae of usp forms.While Ueda's trae identity holds for levels 4N where N is any oddpositive integer, transforming it into an isomorphism for Sk=2(4N;�)beomes inreasingly omplex as the number of odd prime divisors ofN inreases. In the ase of more general levels, partial Heke strutureresults are suÆient to prove that subspaes of newforms satisfyingertain onditions are missing from the deompositions of Sk=2(4N;�)for allN and � as above. Therefore all forms in these subspaes are notin the image of the Shimura lift [12℄ for any suh N and �. These resultsompletely haraterize the largest possible image of the Shimura liftfrom Sk=2(4N;�) forN and � as above, thus providing onditions underwhih this map will fail to be onto.Spei�ally, Theorem 5.2 gives partial deompositions of Sk=2(4M;�)when k � 5 and the subspae V3=2(4M;�) � S3=2(4M;�) when k = 3,for odd positive integers M satisfying ertain restritions. In Theorem5.6 and Corollary 5.7, we show how introduing additional prime fa-tors into the level a�ets the nature of the deompositions; essentially,shifting from the deomposition of Sk=2(4N;�) to that of Sk=2(4Nq; �)where M j N and q 6 jM does not result in the appearane of anyadditional newforms at levels dividing 2M . Thus the nature of thedeompositions with respet to any prime p jM is unhanged.For t = 0 or 1 and M an odd positive integer, we onsider the sub-spae Snk�1(2tM) � S0k�1(2tM) de�ned in [15℄ whih exludes all forms



HECKE STRUCTURE OF SPACES OF CUSP FORMS 3in S0k�1(2tM) that are twists of newforms of lower levels. As a onse-quene of Theorem 5.2 and Corollary 5.7, Corollary 5.1 haraterizesthose newforms F 2 Snk�1(2tM) appearing in the image of the Shimuralift from Sk=2(4N;�) for some N and � as above. This haraterizationis given in terms of the ongruene modulo 4 of the primes p divid-ing M , the exponents to whih these primes our, and the subspaeof Snk�1(2tM) to whih F belongs. Corollary 5.1 provides a lassialreformulation of representation-theoreti onditions given by Fliker[5℄ and Waldspurger [17℄ in theorems determining when a newformF 2 Snk�1(2tM) has equivalent half-integral weight usp forms. Theseresults are only given for F 2 Snk�1(2tM); some disussion of how onemay proeed in investigating the ase F 2 Sn?k�1(2tM) is also given.In Setion 6 we provide examples of nonzero newforms whih are notin the image of the Shimura lift for any Sk=2(4N;�) as above. Theseexamples are produed using tables of Cremona [4℄, turning to thease k = 3. We ompute lower bounds for the dimension of ertainsubspaes of S2(2tM) for partiular values of t and M .Many interesting questions have been raised by these results, mostnotably questions about the role whih the Atkin-Lehner involutionWp plays in determining whether a newform F 2 Snk�1(2tM) is in theimage of the Shimura lift at a given level. In the onluding remarkswe disuss this and other related questions.This paper ontains results of my thesis work at Dartmouth College.I would like to express my deep gratitude to my thesis advisor, ThomasShemanske, for all his guidane and enouragement. I would also liketo thank John Rhodes for several insightful onversations.2. Preliminaries2.1. Notation and Terminology. Let SL2(Z) = �( a b d ) : a; b; ; d 2Z andad� b = 1	, and for eah positive integer N onsider the ongruenesubgroup �0(N) = �( a b d ) 2 SL2(Z) :  � 0 (mod N)	. Let � bea Dirihlet harater modulo N . Then � = QpjN �p where �p is aDirihlet harater modulo pordp(N). We will be onerned with �p =��p�, the Legendre symbol modulo an odd prime p.Let k � 3 be an odd positive integer. Denote the spae of all uspforms of weight k�1, level N and harater � by Sk�1(N;�), or simplySk�1(N) if the harater is trivial. For eah positive integer n relativelyprime toN , we onsider one Heke operator Tk(n) ating on Sk�1(N;�).



4 SHARON M. FRECHETTEFor eah positive integer Q with (Q;N=Q) = 1, let WQ denote theAtkin-Lehner involution, and abbreviateWqordqN asWq. Let R� denotethe twisting operator with respet to the Dirihlet harater �, andwrite R� = Rp if � = ��p�. Finally, let Bd denote the shift operatorfor a positive integer d. De�nitions and details an be found in [8℄ or[15℄. We will often need the ommuting relationships between theseoperators, given in the following:Proposition 2.1. [1℄, [2℄, [15℄ For N and n positive integers and k > 1an odd positive integer, let  be a quadrati harater of ondutor f ,and let Q be a positive divisor of N with (Q;N=Q) = 1. For anyF 2 Sk(N), the following hold:(1) If (n;Nf ) = 1, then F j R j Tk(n) =  (n)F j Tk(n) j R .(2) If (n;N) = 1, then F j Tk(n) jWQ = F j WQ j Tk(n).(3) If (Q; f ) = 1, then F j R jWQ =  (n)F jWQ j R .(4) If Q0 is another divisor of N suh that (Q0; QN=Q0) = 1, thenF jWQ0 jWQ = F j WQ0Q = F jWQ jWQ0.Moreover, if N = p�M , with p an odd prime, M a positive integer withp 6 jM , and � = 0 or 1, then(5) F j Rp j Wp2 = ��1p �F j Rp.We will also have need of several subspaes of Sk�1(N;�): The sub-spae S�k�1(N;�) generated by the oldforms, its orthogonal omplementthe subspae S0k�1(N;�) generated by the newforms, and the image ofthis spae under the ation of Rp, denoted S0k�1(N;�) j Rp. For details,see [8℄ or [15℄. We will also use the following orollary to the strongmultipliity-one result:Proposition 2.2. Let N be a positive integer, let d be a positive di-visor of N , and let Æ(N=d) denote the number of positive divisors ofan N=d. Then we have the following isomorphism as modules for theHeke algebra: Sk(N) �=MdjN Æ(N=d)S0k(d)Proof. This follows from Lemma 15 and Theorem 5 in [1℄. �In the half-integral weight setting, denote the spae of all usp formsof weight k=2, level 4N and harater � by Sk=2(4N;�). For eah pos-itive integer n relatively prime to 2N , we onsider one Heke operatoreTk=2(n2) ating on Sk=2(4N;�). For details, see [15℄.



HECKE STRUCTURE OF SPACES OF CUSP FORMS 5In the ase k = 3, we must restrit attention to those half-integralweight usp forms whih orrespond to integral weight usp forms un-der the Shimura orrespondene. We have the following onstrution:Let U3=2(4N;�) be the subspae of S3=2(4N;�) whih is spanned bythe funtions h (tz) where h (z) =P1m=1  (m)me2�im2z,  is a prim-itive harater modulo a positive integer r with  (�1) = �1, and t isan integer, suh that the onditions tr2 j N and � = ��t� � are sat-is�ed. Let V3=2(4N;�) be the orthogonal omplement of U3=2(4N;�)in S3=2(4N;�) with respet to the Petersson inner produt. Under theShimura orrespondene, the forms in U3=2(4N;�) orrespond to Eisen-stein series and the forms in V3=2(4N;�) orrespond to usp forms (see[14℄). Therefore when k = 3, we onsider only V3=2(4N;�).The deompositions given in this paper are obtained from trae iden-tities. Lettr(T j V ) denote the trae of an operator T on a vetor spae V . Ifwe have subspaes Shalf � Sk=2(4N;�) and Swhole � Sk�1(2N), whereN is a positive integer and � is a quadrati Dirihlet harater modulo4N , it an be shown that(1) tr(eTk=2(n2) j Shalf) = tr(Tk�1(n) j Swhole) 8n with (n; 2N) = 1i� Shalf �= Swhole as modules for the algebragenerated by all the Heke operatorsSee [6℄ for details. By expliitly alulating tr� eTk=2(n2) j �Sk=2(4N;�)��when (n; 2N) = 1 and � is even and quadrati, Ueda [14℄ proved anidentity relating this trae to ertain traes on spaes of integral weightforms. We use this identity in proving Theorem 3.1 and Theorem 5.6and its orollaries. To do so, we must break apart the newform spaes,isolating a subspae Snk�1(N) � S0k�1(N) whih is losed under notonly the appropriate W and T operators but also under the twistingoperators Rp for any odd prime p with p2 j N . This spae was de�nedby Ueda, and is denoted by Snk�1(N) in [14℄ and by S�k�1(N) in [15℄.We give de�nitions of Snk�1(N) and its relevant subspaes, as well asseveral properties whih will be needed throughout.2.2. The Subspae Snk�1(N). In general, the spae S0k�1(N) need notbe losed under quadrati twists. In fat, for an odd prime p withordp(N) = 2, taking a newform of level p2M with p 6 jM and twistingby Rp gives us a newform of level pM or M by Theorem 6 of [1℄.Moreover, S0k�1(p�M) j Rp � S0k�1(p2M) for � = 0; 1. To obtain asubspae of S0k�1(N) whih is losed under quadrati twists, we must



6 SHARON M. FRECHETTE\split o�" all forms in S0k�1(N) whih are quadrati twists of newformsof lower levels.Let 
 denote the set of all odd primes dividing N , and for eah p 2 
let �p = ordp(N). Let e
 = 
 [ f2g, and write N = 2tM = Qp2e
 p�p.Put 
2 = fp 2 
 j �p = 2g, and let RA =Qp2ARp for any subset A of
2. For any partition 
2 = A + B + C of the set of primes ourringwith exponent 2, de�ne an integerN(B;C) = Yp2e
�(B+C) p�p Yp2B p:Then S0k�1(N(B;C)) j RB+C � S0k�1(N) by repeated appliation ofTheorem 6 of [1℄. If we take the sum of the subspaes S0k�1(N(B;C)) jRB+C over all partitions 
2 = A + B + C where 
2 6= A, this willinlude all forms in S0k�1(N) whih are quadrati twists of newforms oflower levels. We therefore putS2k�1(N) = X
2=A+B+C
2 6=A S0k�1(N(B;C)) j RB+C ;and de�ne Snk�1(N) to be the orthogonal omplement of S2k�1(N) inS0k�1(N) with respet to the Petersson inner produt. For example, ifN = 2p2, we haveS2k�1(2p2) = S0k�1(2p) j Rp + S0k�1(2) j Rp:Proposition 2.3 (Ueda). [15℄ Let the notation and terminology be asabove. Then S0k�1(N) = M
2=A+B+C Snk�1(N(B;C)) j RB+CNote that the 
2 = A summand is Snk�1(N). We refer to the diretsum of the remaining terms as Sn?k�1(N).With respet to eah odd prime p dividing N with ordp(N) � 2, wede�ne four subspaes of Snk�1(N) as follows: for eah hoie of �p; �p =�1 putSp�p�pk�1 (N) = fF 2 Snk�1(N) : F j Wp = �pF and F j Rp jWp = �pF j RpgThese subspaes appeared in [11℄, denoted by SI , SII , SII , and SIII.It is easy to show that Snk�1(N) = Sp++k�1 (N) � Sp+�k�1 (N) � Sp�+k�1 (N) �Sp��k�1 (N). In general, we will need to split the spae Snk�1(N) intosubspaes depending on eah odd prime p j N with ordp(N) � 2. Let
2+ denote the set of odd prime divisors of N with ordp(N) � 2.



HECKE STRUCTURE OF SPACES OF CUSP FORMS 7For any hoie of �p; �p = �1 for eah p 2 
2+, let S(p�p�p)p2
2+k�1 (N)denote the subspae of Snk�1(N) onsisting of forms F whih satisfy therelations F jWp = �pF , and F j Rp jWp = �pF j Rp. We haveSnk�1(N) =MS(p�p�p)p2
2+k�1 (N)where the diret sum is taken over all possible hoies for the tuple(p�p�p)p2
2+. Using these de�nitions and Proposition 2.1, we an eas-ily prove the following fats about the behavior of these subspaesSp�p�pk�1 (N) under the ation of various operators as desribed in thefollowing:Proposition 2.4. Let N be a positive integer with ordp(N) � 2 forsome odd prime p. The subspaes Sp�p�pk�1 (N) as de�ned above behaveunder the ation of the Heke operators Tk�1(n), involution Wp, andtwisting operator Rp in the following way:(1) Sp�p�pk�1 (N) is losed under the ation of Tk�1(n) for �p; �p = �1and (n;N) = 1.(2) Sp�p�pk�1 (N) is losed under the ation of Wp for �p; �p = �1, .(3) Sp++k�1 (N) and Sp��k�1 (N) are both losed under the ation of Rp,while Sp+�k�1 (N) j Rp = Sp�+k�1 (N) and Sp�+k�1 (N) j Rp = Sp+�k�1 (N).An important onsequene of Proposition 2.4 is that Snk�1(N) islosed under the ation of the appropriate Heke operators, involutionsand twists. Moreover, we have the following:Proposition 2.5. Let the notation and terminology be as above. Theneah summand Snk�1(N(B;C)) j RB+C of Sn?k�1(N) is losed under theation of Wp for eah odd prime p j N .Proof. Let F 2 Snk�1(N(B;C)) j RB+C , so that F = G j RB+C for someG 2 Snk�1(N(B;C)). First suppose p =2 B + C. Then p�p jj N(B;C),and we have F j Wp = G j RB+C j Wp = G j Wp j RB+C by (3)of Proposition 2.1. Sine G 2 Snk�1(N(B;C)), we an write G as alinear ombination of some Gp�p�p 2 Sp�p�pk�1 (N(B;C)). Eah subspaeSp�p�pk�1 (N(B;C)) is losed under the ation of Wp by Proposition 2.4,hene Gp�p�p j Wp 2 Sp�p�pk�1 (N(B;C)) � Snk�1(N(B;C)). By linearity,G j Wp 2 Sp�p�pk�1 (N(B;C)) � Snk�1(N(B;C)) as well, and thereforeF jWp 2 Snk�1(N(B;C)) j RB+C .If p 2 B + C, then ordp(N(B;C)) = 0 if p 2 C or 1 if p 2 B.Put RB+C = RpRB+C�fpg. Thus by Proposition 2.1,



8 SHARON M. FRECHETTEF jWp = F jWp2 = G j Rp j RB+C�fpg jWp2= G j Rp jWp2 j RB+C�fpg = ��1p �G j Rp j RB+C�fpg= ��1p �G j RB+C = �G j RB+C = �F 2 Snk�1(N(B;C)) j RB+C�2.3. Equivalent Forms. The results in Setions 5 and 6 pertain tohalf-integral weight usp forms whih are equivalent to a given inte-gral weight newform F . We say that a newform F 2 S0k�1(2N;�2) isequivalent to a usp form f 2 Sk=2(4N;�) if f and F are both Hekeeigenforms with orresponding eigenvalues equal for almost all primesp. That is, f j eTk=2(p2) = �pf and F j Tk�1(p) = �pF for almost all p,where �p 2 C. Let Sk=2(4N;�; F ) denote the subspae of Sk=2(4N;�)onsisting of all forms equivalent to F . We have the following diretsum, Sk=2(4N;�) =MF Sk=2(4N;�; F )taken over all newforms F of levels dividing 2N .3. The Deompositions at Level 4pmIn this setion we give expliit means of onstruting deompositionsfor the spaes Sk=2(4pm; �) for k � 5 (resp. V3=2(4pm; �) for k = 3). De-ompositions were also omputed expliitly for levels with two distintodd prime divisors, and the regular struture of these deompositionsillustrates quite well what should happen in the ase of general level4N . We disuss these more general levels in the remark at the end ofthis setion as well as in Setion 5.Theorem 3.1. Let the notation and terminology be as above, and leta; t, and u be integers with a � �1. For any spei�ed m and �, weexpliitly onstrut an isomorphism between Sk=2(4pm; �) for k � 5(resp. V3=2(4pm; �) for k = 3) and a diret sum of integral weight formswhih depends on m and �. This is an isomorphism as modules for theHeke algebra. The summands are (subspaes of) S0k�1(2tpu) j RA for0 � t � 1 and 0 � u � m, where A = 1 or p (with R1 trivial). Foreah suh level and twist, onsult the table to determine the subspaeand oeÆient with respet to p. Then multiply eah oeÆient by2 � t, and take the diret sum over all possible hoies of 0 � t � 1,0 � u � m, and A = 1 or p.



HECKE STRUCTURE OF SPACES OF CUSP FORMS 9Contribution at level 2tpu twisted by RACases Sum over: CoeÆient: Subspae:m = 0 A = 1 u = 0 | � = 1 | 1 S0m = 2a + 3 A = 1 u > 0 even | either � �p; �p = �1 [2 + �p + �p��1p �℄(a+ 2� u2 ) Sp�p�p" " u � 3 odd | either � | 2a+ 4� u S0" " u = 0 or 1 | either � | 4a+ 6� u(a + 2) S0" A = p u = 0 or 1 | either � | (2 + (2 � u)��1p �)(a + 1) S0m = 2a + 4 A = 1 u > 0 even u = m, � = 1 �p = �1 2 Sp+�p" " " " � = � p� � �p; �p = �1 1 + �p��1p � Sp�p�p" " " u < m � = 1 �p; �p = �1 (a + 2� u)[2 + �p + �p��1p �℄ + (1 + �p) Sp�p�p" " " " � = � p� � �p; �p = �1 (a + 2� u)[2 + �p + �p��1p �℄ + (1 + �p��1p �) Sp�p�p" " u � 3 odd | either � | 2a+ 5� u S0" " u = 0 or 1 | � = 1 | 4a+ 8� u(a + 3) S0" " " | � = � p� � | 4a+ 8� u(a + 2) S0" A = p u = 0 or 1 m 6= 2 � = 1 | (2a + 3� u(a + 1))(1 + ��1p �) + u(a+ 1) S0 j Rp" " " " � = � p� � | (2a + 3� u(a + 2))(1 + ��1p �) + u(a+ 2) S0 j Rp" " " m = 2 � = 1 | 1 + ��1p � S0 j Rp" " " " � = � p� � | 1 + (1 � u)��1p � S0 j RpExample 3.2. By Theorem 3.1, for k � 5 and � = 1 or �p��, we have:Sk=2(4p3; �) �= 1Mt=0(2� t)(S0k�1(2tp3)� �3 + ��1p ��Sp++k�1 (2tp2)� �3� ��1p ��Sp+�k�1 (2tp2)� �1 + ��1p ��Sp�+k�1 (2tp2)� �1� ��1p ��Sp��k�1 (2tp2)�4S0k�1(2tp)� 6S0k�1(2t)� (2 + ��1p �)S0k�1(2tp) j Rp � 2(1 + ��1p �)S0k�1(2t) j Rp)Notie that exatly one of �1� ��1p �� is zero aording to the ongru-ene of p modulo 4. Hene exatly one of the spaes Sp��k�1 (2tp2) willbe \missing" from this isomorphism. Consequently, newforms in thatspae are not in the image of the Shimura lift from Sk=2(4p3; �). InSetion 5, we haraterize those newforms in the Sn-spaes whih arein the image of the Shimura lift from Sk=2(4N;�) for some odd positiveinteger N and some even quadrati Dirihlet harater � modulo 4N .Moreover, we give onditions under whih a newform in an Sn-spaehas no suh preimage.



10 SHARON M. FRECHETTEProof of Theorem 3.1. The isomorphisms are obtained by manipulat-ing the following trae identities of Ueda's:Theorem 3.3. (Ueda) [14℄ Let N be a positive integer suh that 2 �ord2(N) = � � 4 and put M = 2��N . Let � be an even quadratiDirihlet harater modulo N and suppose that the ondutor of � isdivisible by 8 if � = 4. Then for k � 5 and for all positive integers nwith (n;N) = 1 we have the following relation:tr� eTk=2(n2) j �Sk=2(N;�)�� = tr�Tk�1(n) j �Sk�1(N=2)��+XL0 �(n;L0)tr�WL0Tk�1(n) j �Sk�1(2��1L0L1)��and for k = 3 we have the following relation:tr� eT3=2(n2) j �V3=2(N;�)�� = tr�T2(n) j �S2(N=2)��+XL0 �(n;L0)tr�WL0T2(n) j �S2(2��1L0L1)��where(1) PL0 runs over all square divisors L0 of M with L0 > 1,(2) to eah L0 the orresponding L1 is given by L1 =MQpjL0 p�ordp(M),(3) and the onstant �(n; L0) is de�ned as follows:�(n; L0) =YpjM �(p; n; ordp(L0)=2) with�(p; n; a) = 8><>:1 if a = 01 + ��np � if 1 � a � hordp(N)�12 i�p(�n) if ordp(N) is even and a = ordp(N)2We handle the ase k � 5. All omputations when k = 3 are om-pletely analogous. We must onsider � = 1 or �p��, however if theexponent m is odd, the trae identity has no dependene on �.Case 1: m = 0 or 1. In this ase, N is square-free and the traeidentity in Theorem 3.3 beomestr� eTk=2(n2) j �Sk=2(4N;�)�� = tr�Tk�1(n) j �Sk�1(2N)��yielding the isomorphism Sk=2(4N;�) �= Sk�1(2N) by appliation of(1). We then break Sk�1(2N) into a diret sum of newform spaesaording to Proposition 2.2 in order to obtain the deomposition.



HECKE STRUCTURE OF SPACES OF CUSP FORMS 11Case 2: m � 2. The deompositions for non-square-free levels areobtained by bootstrapping up from deompositions for lower levels. For � 1 and a � 0, de�ne the following expressions:D2 = tr�eTk=2(n2) j �Sk=2(4p2; 1)��� tr�eTk=2(n2) j �Sk=2(4p2�1; �)��E2 = tr�eTk=2(n2) j �Sk=2(4p2;�p��)��� tr�eTk=2(n2) j �Sk=2(4p2�1; �)��Fa = tr�eTk=2(n2) j �Sk=2(4p2a+3; �)��� tr�eTk=2(n2) j �Sk=2(4p2a+2; 1)��� tr� eTk=2(n2) j �Sk=2(4p2a+2;�p��)��+ tr�eTk=2(n2) j �Sk=2(4p2a+1; �)��Substituting appropriately for eah term using the trae identity inTheorem 3.3 yields signi�ant anellation:D2 = tr�Tk�1(n) j �Sk�1(2p2)��� tr�Tk�1(n) j �Sk�1(2p2�1)��+ tr�Wp2Tk�1(n) j �Sk�1(2p2)��E2 = tr�Tk�1(n) j �Sk�1(2p2)��� tr�Tk�1(n) j �Sk�1(2p2�1)��+ ��np �tr�Wp2Tk�1(n) j �Sk�1(2p2)��Fa = tr�Tk�1(n) j �Sk�1(2p2a+3)��� 2tr�Tk�1(n) j �Sk�1(2p2a+2)��+ tr�Tk�1(n) j �Sk�1(2p2a+1)��We then redue these three expressions to ones involving traes ofonly Heke operators ating on spaes of newforms. For eah Tk�1(n)-term, this is done via Proposition 2.2. For eah term involving W -operators, we �rst apply the following:Proposition 3.4 (Ueda). [15℄ Let A, B be �nite sets onsisting ofprime numbers suh that A \ B = ; and also let ap for p 2 A, and bqfor q 2 B be any non-negative integers. Then for a positive integer nprime to Qp2A papQq2B qbq , we have the following identity:tr�WATk�1(n) j �Sk�1(Yp2A pap Yq2B qbq )��= X(tp)p2A0�tp�[ap=2℄ X(uq )q2B0�uq�bq Yq2B(bq � uq + 1)tr�WATk�1(n) j �S0k�1(Yp2A pap�2tp Yq2B quq )��



12 SHARON M. FRECHETTEWe then eliminate all W -operators via Propositions 2.3 and 2.1, andinorporate any oeÆients of �np� into the trae terms via the follow-ing:Lemma 3.5. [6℄, [9℄ Let k;N;M be positive integers with k � 3, and let be a primitive Dirihlet harater modulo M . Let N 0 = lm(N;M2).Then for (n;N 0) = 1, (n)tr�Tk�1(n) j �S0k�1(N)�� = tr�Tk�1(n) j �S0k�1(N) j R ��where we onsider S0k�1(N) j R as a submodule of Sk�1(N 0;  2).After olleting terms aording to level and subspae with respetto p, we have the following redued expressions:D2 = 1Xt=0(2� t)h2 Xu=1 tr�Tk�1(n) j �Sp++k�1 (2tp2u) + Sp+�k�1 (2tp2u)��+ Xu=1 tr�Tk�1(n) j �Snk�1(2tp2u�1)��+ 2tr�Tk�1(n) j �S0k�1(2t)��+ �1 + ��1p ��tr�Tk�1(n) j �S0k�1(2tp) j Rp � S0k�1(2t) j Rp��iE2 = 1Xt=0(2� t)h�1 + ��1p �� Xu=1 tr�Tk�1(n) j �Sp++k�1 (2tp2u)� Sp�+k�1 (2tp2u)��+ �1� ��1p �� Xu=1 tr�Tk�1(n) j �Sp+�k�1 (2tp2u) + Sp��k�1 (2tp2u)��+ Xu=1 tr�Tk�1(n) j �Snk�1(2tp2u�1)��+ tr�Tk�1(n) j �S0k�1(2tp)��+ 2tr�Tk�1(n) j �S0k�1(2t)��+ tr�Tk�1(n) j �S0k�1(2tp) j Rp��+ �1 + ��1p ��tr�Tk�1(n) j �S0k�1(2t) j Rp��iFa = 1Xt=0(2� t)tr�Tk�1(n) j �S0k�1(2tp2a+3)��When m = 2, if � = 1, rearrange the de�nition of D2 to obtaintr�eTk=2(n2) j �Sk=2(4p2; 1)�� = tr�eTk=2(n2) j �Sk=2(4p; �)��+D2Substitute the expression for tr�eTk=2(n2) j �Sk=2(4p; 1)�� from Case 1,along with the redued expression for D2. Collet terms aording tolevel and subspae with respet to p to obtain a redued expression



HECKE STRUCTURE OF SPACES OF CUSP FORMS 13for tr� eTk=2(n2) j �Sk=2(4p2; 1)��, and hene the deomposition by (1).Similarly, use E2 when � = �p��.When m = 2a+ 3 for a � 0, rearranging the de�nition of Fa gives:tr� eTk=2(n2) j �Sk=2(4p2a+3; �)�� = Fa + tr� eTk=2(n2) j �Sk=2(4p2a+2; 1)��+ tr� eTk=2(n2) j �Sk=2(4p2a+2;�p��)��� tr�eTk=2(n2) j �Sk=2(4p2a+1; �)��Substituting for the level 4p2a+2 terms and then induting on a � 0,we havetr� eTk=2(n2) j �Sk=2(4p2a+3; �)�� = aX=0 hFa+D2a+2+E2a+2i+tr� eTk=2(n2) j �Sk=2(4p; �)��Substitute for tr� eTk=2(n2) j �Sk=2(4p; �)�� from Case 1 along with thesummands Fa, D2a+2, E2a+2, and ollet terms aording to level andsubspae with respet to p. This gives the redued expression fortr�eTk=2(n2) j �Sk=2(4p2a+3; �)��. The deomposition follows.When m = 2a+ 4 for a � 0, the results again depend on the hoieof �. If � = 1, rearrange the expression for D2a+4 to obtain:tr�eTk=2(n2) j �Sk=2(4p2a+4; 1)�� = tr� eTk=2(n2) j �Sk=2(4p2a+3; �)��+D2a+4Then substitute for tr�eTk=2(n2) j �Sk=2(4p2a+3; �)�� and D2a+4, andombine terms as usual. Similarly, use E2a+4 if � = �p��. �Remark: If p and q are distint odd primes, the nature of the deom-position at level 4pmqs was found to be the same with respet to p as itwas at level 4pm. This suggests that this deomposition theorem maygeneralize to level 4N , N any odd positive integer; one would use thegiven table for eah distint p j N and then ombine the informationfor all suh primes. De�ning terms like those used in Case 2, and usingthem to build up to level 4N one prime at a time, may lead to suh ageneralization.4. Comparison to Deompositions of the Kohnen SubspaeThe deompositions given in Theorem 3.1 have a strong relationshipto the deompositions given by Ueda [14℄ for the Kohnen subspaeSk=2(4pm; �)K when k � 5. Comparing our deompositions to Ueda's,we see preisely how the Kohnen subspae sits inside the full spae of



14 SHARON M. FRECHETTEusp forms. For example, with the notation and de�nitions as above,by Theorem 3.1 we have:Sk=2(4p2;�p��) �= 1Mt=0 (2� t)((1 + ��1p �)�Sp++k�1 (2tp2)� Sp+�k�1 (2tp2)	� (1� ��1p �)�Sp�+k�1 (2tp2)� Sp��k�1 (2tp2)	� 3S0k�1(2tp)� S0k�1(2tp) j Rp� 4S0k�1(2t)� (1 + ��1p �)S0k�1(2t) j Rp)while Ueda [14℄ gives the following deomposition for the Kohnen sub-spae:Sk=2(4p2;�p��)K �= (1 + ��1p �)�Sp++k�1 (p2)� Sp+�k�1 (p2)	� (1� ��1p �)�Sp�+k�1 (p2)� Sp��k�1 (p2)	� 3S0k�1(p)� S0k�1(p) j Rp� 4S0k�1(1)� (1 + ��1p �)S0k�1(1) j RpFor levels dividing p2, the forms ourring in the isomorphism for thefull spae are preisely those whih ourred in Ueda's isomorphism forthe Kohnen spae, with their multipliities doubled. In addition, thestruture of the forms ourring at level 2pu is parallel to the stru-ture ourring at level pu | the same subspaes appear with the sameoeÆients depending on p. The parallelism between our deomposi-tions and Ueda's at any level 4pm indiates a beautiful struture in therelationship between the Kohnen subspae and the full spae of uspforms. The regular struture of the deompositions suggests that thisparallelism should extend to all levels.5. When Sk=2(4N;�; F ) is Nonzero for NewformsF 2 Snk�1(2tM)Throughout this setion, t = 0 or 1, M and N are odd positive inte-gers, M is an odd positive integer with the same prime fators as M ,eah ourring to odd exponent at least 3, and � and �0 are even qua-drati Dirihlet haraters modulo the relevant levels. The disussion



HECKE STRUCTURE OF SPACES OF CUSP FORMS 15fouses on Sk=2(4N;�) for k � 5. All proofs are given for this ase,and analogous arguments hold for V3=2(4N;�) when k = 3. We give aseries of partial results regarding the struture of the deompositionsfor Sk=2(4N;�) and V3=2(4N;�) whih provide signi�ant informationabout the image of the Shimura lift. For all newforms F 2 Snk�1(2tM),these results lead to the following haraterization, in terms of lassialonditions, of whether F has equivalent half-integral weight usp formsof level 4N and harater �:Corollary 5.1. With the notation and terminology as above, let F 2Snk�1(2tM). Then Sk=2(4N;�; F ) = f0g for all odd positive integers Nand all even quadrati Dirihlet haraters � modulo 4N if and only ifthe following hold:(1) There is at least one prime p jM suh that ordp(M) is even.(2) For any suh prime p, either p � 1 (mod 4) and F 2 Sp��k�1 (2tM),orp � 3 (mod 4) and F 2 Sp�+k�1 (2tM).In ase Sk=2(4N;�; F ) 6= f0g, the minimal level for whih this oursis 4N = 4M .This orollary depends on several results given below: First, The-orem 5.2 takes the spae Snk�1(2tM) and traks its \appearane" inthe deomposition of Sk=2(4M;�). This piee of the deomposition ofSk=2(4M;�) leads to Corollary 5.5 whih expliitly gives the dimensionof Sk=2(4M;�; F ) for all F 2 Snk�1(2tM); in partiular, it gives ondi-tions under whih this dimension is zero. Theorem 5.6 and Corollary5.7 then indiate the e�et of introduing additional prime fators intothe level.5.1. Subspaes of Snk�1(2tM) Appearing in the Deompositionof Sk=2(4M;�). For any newform F 2 Snk�1(2tM), we an determinepreisely the number of opies of F appearing in the deomposition ofSk=2(4M;�) (i.e. the dimension of Sk=2(4M;�; F )):Theorem 5.2. Let t 2 f0; 1g and let M = Qp pbp be the produt ofdistint odd primes p to positive integer exponents bp. Split the primesdividing M into the following three sets: U = fp j M : bp = 1g, E =fp j M : bp � 2 is eveng, and O = fp j M : bp � 3 is oddg. Considerany M =QpjM pap with ap odd integers suh that ap � maxf3; bpg andany even quadrati Dirihlet harater � modulo 4M .



16 SHARON M. FRECHETTE(1) If E = ;, then for k � 5 the total ontribution of summands inthe deomposition of Sk=2(4M;�) whih are subspaes of Snk�1(2tM)is: (2� t)Yp2U(3 hap2 i+ 1)Yp2O(ap + 1� bp)Snk�1(2tM)(2) If E 6= ;, then for k � 5 the total ontribution of summands inthe deomposition of Sk=2(4M;�) whih are subspaes of Snk�1(2tM)is:(2�t)Yp2U(3 hap2 i+1)Yp2E(hap2 i+1�bp2 )Yp2O(ap+1�bp) Mp2E�p;�p=�1Yp2E p�p�pS(p�p�p)p2Ek�1 (2tM)where p�p�p = (2 + �p) + �p��1p �(3) Statements (1) and (2) hold for k = 3, with Sk=2(4M;�) re-plaed by V3=2(4M;�).Proof. We �rst isolate and simplify all terms in the trae identity forSk=2(4M;�) whih give ontributions to Snk�1(2tM). We then show byindution that these expressions redue to the struture of oeÆientsand subspaes as given in the theorem.Sine eah ap is odd, the trae identity for Sk=2(4M;�) is independentof the hoie of harater �. Thus �(n; L0) =QpjL0(1+��np �) for eahsquare L0 j M with L0 > 1. Moreover, sine eah ap � 3, eah primedividing M (by onstrution, the primes dividingM) will our in someL0. For onveniene, we group terms in the L0-sum of the trae identityby the set of prime divisors of L0. For subsets PU � U and PE � E , wewill be onerned with terms for whih the set of prime divisors of L0 isPU [PE . We refer to these as the \PUPE -sums" in the trae identity. Inthe following proposition, we determine the ontribution to Snk�1(2tM)from these sums together with the Tk�1(n)-term.Proposition 5.3. Let the notation and terminology be as above, andlet A denote the set of prime divisors of M . For any subsets PE � Eand PU � U , we get a ontribution to Snk�1(2tM) from the PUPE-sum.The total ontribution to Snk�1(2tM) from these sums is given by:(2) (2� t)" XPU�U XPE�EKPU ;PE tr�WPETk�1(n) j �Snk�1(2tM)��#



HECKE STRUCTURE OF SPACES OF CUSP FORMS 17where KPU ;PE = Yp2PE "�1+��np ����ap2 �+1�bp2 �# Yp2PU �ap2 � Yp2Ap=2(PE[PU)(ap+1�bp)Proof. The ase PE = PU = ; orresponds to the Tk�1(n)-term in thetrae identity. Reduing this by Proposition 2.2 and isolating the level2tM term yields(2� t)Qp2A(ap + 1� bp)tr�Tk�1(n) j �S0k�1(2tM)�� as desired.If PU = ; but PE 6= ;, by reduing eah PE -sum by Proposition 3.4and then simplifying, we an isolate the level 2tM term whih is:(2�t)" Yp2PE �(1 + ��np �)��ap2 �+ 1� bp2 �� Yp2A�PE(ap+1�bp)#tr�WPETk�1(n) j �S0k�1(2tM)��Sine S0k�1(2tM) = Snk�1(2tM) � Sn?k�1(2tM) and sine both piees arelosed under the ation ofWPE , applying Proposition 2.5 and disardingall Sn?k�1(2tM) terms yields the desired expression. Moreover, we getno ontributions to Snk�1(2tM) from terms at levels other than 2tMin the PE -sums: For a �xed PE -sum, any ontributions to Snk�1(2tM)from a level other than 2tM would neessarily ome from a summandSnk�1(2tM) j RC � Sn?k�1(2tfM) for some fM > M , but only if oeÆients�np� twisted in to \undo" the twist RC . The method of onstrution inProposition 2.3 presribes fM =MQp2PU p for some nonempty PU � U ,with orresponding C = Qp2PU p. The Legendre symbol oeÆientsappearing in our terms are all with respet to primes in PE however,so they will not a�et the twist RC .Now if PU 6= ;, write ePU = Qp2PU p. In this ase, ontributions toSnk�1(2tM) from the PUPE -sums arise only from summands Snk�1(2tM) jR ePU � Sn?k�1(2tM ePU): For eah term in a PUPE -sum, all primes p 2 PUwill our to even exponents in the level. Therefore we annot obtainlevel 2tM diretly. Reduing eah PUPE -sum by Proposition 3.4 andsimplifying, we an isolate the level 2tM ePU term. By Propositions 2.5and 2.3, we an then isolate the Snk�1(2tM) j R ePU summand whih weredue by repeated appliation of Proposition 2.1 part (5) toYp2PU ���1p �+ �np��LPU ;PE tr�WPETk�1(n) j �Snk�1(2tM) j R ePU ��



18 SHARON M. FRECHETTEwhere LPU ;PE = Yp2PE ��1 + ��np ����ap2 �+ 1� bp2 �� Yp2PU �ap2 � Yp2Ap=2(PE[PU)(ap+1� bp).By Lemma 5.4 given below, the only term in Qp2PU ���1p � + �np��whih will \undo" the twist R ePU is Qp2PU �np�. Thus the expressionabove beomes(2�t)"XPU XPE KPU ;PE tr�WPETk�1(n) j �Snk�1(2tM)��#+�twists of terms of level 2tM�We then disard the twists of terms of level 2tM and take the sum overall subsets PE and PU to obtain the result. �The following generalization of Lemma 3.5 allows �np� to be \twistedin" when the trae expression still involves WQ operators (as above),provided p 6 jQ:Lemma 5.4. Let k;N;M;Q be positive integers with k � 3 and (Q; f ) =1, where f is the ondutor of  , a primitive Dirihlet harater mod-ulo M . LetN 0 = lm(N;M2). Then for (n;N 0) = 1 we have:(1)  (n) tr�WQTk�1(n) j �S0k�1(N)�� = tr�WQTk�1(n) j �S0k�1(N) jR ��.(2)  (n) tr�WQTk�1(n) j �S0k�1(N) j R �� = tr�WQTk�1(n) j �S0k�1(N)��.Proof. Let [T ℄BB denote the matrix of an operator T in terms of a basis B.Choose a basis B = fF1; : : : ; Fdg of S0k�1(N) onsisting of normalizednewforms. One an show that C = fF1 j R ; : : : ; Fd j R g is then abasis of S0k�1(N) j R . Using Proposition 2.1 and multipliity-one, weexpliitly ompute trae([WQTk�1(n)℄CC) = tr�WQTk�1(n) j �S0k�1(N) jR �� and trae([WQTk�1(n)℄BB) =  (n)tr�WQTk�1(n) j �S0k�1(N)��,showing them to be equal. This proves (1), and (2) follows sineF j Rp j Rp = F for all newforms F 2 S0k�1(N) and all p 2 
2 (see[11℄). �Proposition 5.3 handles ontributions to Snk�1(2tM) from the PUPE -sums. In fat, no other terms in the trae identity ontribute at thislevel: Using Proposition 3.4, we replae eah L0-sum with a sum ofterms in whih eah p j L0 ours to an even exponent in the levels.When looking for ontributions at level 2tM we an therefore disregard



HECKE STRUCTURE OF SPACES OF CUSP FORMS 19L0-terms where any prime p 2 O divides L0. Thus the expressionin Proposition 5.3 gives all ontributions to Snk�1(2tM) in the traeidentity of Sk=2(4M;�). To omplete the proof of Theorem 5.2, we useindution to show that eliminating the W -operators in (2) gives thestruture of oeÆients and subspaes as stated in the theorem.Case 1: E = ;. By Proposition 5.3, the ontributions to Snk�1(2tM)in the trae identity for Sk=2(4M;�) are in this ase given by(2�t)Yp2O(ap+1�bp)" Yp2U ap+XPU  Yp2PU �ap2 � Yp2U�PU ap!#tr�Tk�1(n) j �Snk�1(2tM)��where PPU denotes the sum over all nonempty PU � U .To obtain the desired struture, we need only show that"Yp2U ap +XPU  Yp2PU �ap2 � Yp2U�PU ap!# =Yp2U �3�ap2 �+ 1� :This is done by induting on jUj, noting that ap = 2�ap2 � + 1 sine apis odd.Case 2: E 6= ;. Due to tehnialities in the indution, we prove amore general result. For any positive integers R and Q with (R;M) = 1and WQ de�ned on Snk�1(2tMR), we show that for all nonnegativeintegral hoies of e = jEj; o = jOj; and u = jUj, the following equalityholds:(3) (2� t)"XPE KPE tr�WQWPETk�1(n) j �Snk�1(2tMR)��+XPU XPE KPU ;PE tr�WQWPETk�1(n) j �Snk�1(2tMR)��#= (2� t)Yp2U(3�ap2 �+ 1)Yp2E ��ap2 �+ 1� bp2 � Yp2O(ap + 1� bp)� Xp2E�p;�p=�1Yp2E p�p�ptr�WQTk�1(n) j �S(p�p�p)p2Ek�1 (2tMR)��The theorem then follows by setting R = Q = 1. We prove (3) byinduting on both e and u. When induting on e, the base ase e = 0for all u � 0 and o � 0 is proved using an indution on u analogous tothe one used in Case 1. Now assume (3) holds for all 0 � ` < e, u � 0;and o � 0. Separate o� one prime q 2 E and write E = E 0 [ fqg. Split



20 SHARON M. FRECHETTEthe subsets PE into two types: (1) PE = PE 0 � E 0 (inluding ;), and (2)PE = PE 0 [fqg for some PE 0 as in (1). Rewrite the left-hand side of (3)in terms of PE 0:(2� t)"(aq + 1� bq)(�XPE0 KPE0 +XPU XPE0 KPU ;PE0�tr�WQWPE0Tk�1(n) j �Snk�1(2tMR)��)+��aq2 �+1� bq2 �(�XPE0 KPE0 +XPU XPE0 KPU ;PE0��1 + ��nq ��tr�WQWqWPE0Tk�1(n) j �Snk�1(2tMR)��)#
Write MR =M 0R0 where R0 = qbqR and M 0 =Mq�bq , and onsiderthe operatorsWQ andWq together asWQ0. M 0 has E 0 as its set of primedivisors ourring to even exponents, with jE 0j = e � 1 < e. Thus byindution the expression above equals(2� t)Yp2U(3�ap2 �+ 1) Yp2E0 ��ap2 �+ 1� bp2 � Yp2O(ap + 1� bp)� Xp2E0�p;�p=�1 Yp2E0 p�p�p"(aq + 1� bq)tr�WQTk�1(n) j �S(p�p�p)p2E0k�1 (2tMR)��+��aq2 �+ 1� bq2 ��1 + ��nq ��tr�WQWqTk�1(n) j �S(p�p�p)p2E0k�1 (2tMR)��#All that remains is to eliminate the Wq-operator and ombine theterms in brakets. Deompose eah subspae S(p�p�p)p2E0k�1 (2tMR) into adiret sum of four subspaes S(p�p�p)p2E0 ;q�q�qk�1 (2tMR), with �q; �q = �1.Simplify the expression using Propositions 3.5 and 2.1, and then notiethat the subspaes S(p�p�p)p2E0 ;q�q�qk�1 (2tMR) are preisely S(p�p�p)p2Ek�1 (2tMR),and the two sums ombine to sum over all p 2 E with the appropriateoeÆients and subspaes. We therefore obtain the right-hand side of(3) This ompletes the proof of Theorem 5.2. �5.2. The Dimension of Sk=2(4M;�; F ).Corollary 5.5. Let the notation and terminology be as in Theorem 5.2and letF 2 Snk�1(2tM) be a newform. The dimension of the spae Sk=2(4M;�; F )is given in the following expressions:



HECKE STRUCTURE OF SPACES OF CUSP FORMS 21Case 1: If E = ;, thendim(Sk=2(4M;�; F )) = (2� t)Yp2U �3 hap2 i+ 1� Yp2O(ap + 1� bp)Case 2: If E 6= ;, then aordingly as F 2 S(p�p�p)p2Ek=2 (2tM),dim(Sk=2(4M;�; F )) = (2�t)Yp2U �3 hap2 i+1�Yp2E � hap2 i+1�bp2 � Yp2O(ap+1�bp)Yp2E p�p�pProof. Case 1 follows immediately from Theorem 5.2. One it is estab-lished that any newform F 2 Snk�1(2tM) belongs to one of the subspaesS(p�p�p)p2Ek�1 (2tM), Case 2 will also follow from the theorem. A priori,F may be a linear ombination of forms in these subspaes. However,sine F is a newform, by Theorem 3 of [1℄ we have F j Wp = �pF , forsome hoie of �p = �1 for eah p 2 E . Sine F j Rp is also a newformby Theorem 6 of [1℄, applying Theorem 4 of [1℄ to F j Rp shows thatF j Rp j Wp = �pF j Rp for some hoie of �p = �1 for eah p 2 E .Thus we have F 2 S(p�p�p)p2Ek=2 (2tM) for some tuple (p�p�p)p2E . �5.3. The Minimal Level for whih Sk=2(4N;�; F ) May Be Non-trivial. For a newform F 2 S0k�1(2tM), we say \F appears (resp. doesnot appear) in the deomposition of Sk=2(4N;�)" if F is (resp. is not)an element of a summand in the isomorphism for Sk=2(4N;�).Theorem 5.6. Let k;M and N be odd positive integers suh that M jN and k � 3. Let t 2 f0; 1g and onsider a newform F 2 S0k�1(2tM).Let q be an odd prime suh that q 6 jM , and require that �p = ordp(N) �3 be odd for all p j N with p 6= q. Finally, let � (resp. �0) be any evenquadrati Dirihlet harater modulo 4N (resp. 4Nq). For k � 5(resp. k = 3), if F does not appear in the deomposition of Sk=2(4N;�)(resp. V3=2(4N;�)), then F does not appear in the deomposition ofSk=2(4Nq; �0) (resp. V3=2(4Nq; �0)).Before giving the proof of Theorem 5.6, we state and prove the fol-lowing:Corollary 5.7. Let M and t be as above, and onsider a newformF 2 S0k�1(2tM). For k � 5 (resp. k = 3), if F does not appear inthe deomposition of Sk=2(4M;�) (resp. V3=2(4M;�)) for any positiveinteger M = QpjM p�p with odd integers �p � 3, and for any evenquadrati Dirihlet harater modulo 4M , then F does not appear in thedeomposition of Sk=2(4N;�0) (resp. V3=2(4N;�0)) for any odd positiveinteger N and any even quadrati Dirihlet harater �0 modulo 4N .



22 SHARON M. FRECHETTEProof. We further abbreviate the statement \F appears (resp. doesnot appear) in the deomposition of Sk=2(4N;�)" as \F appears (resp.does not appear) in Sk=2(4N;�)". Let F 2 S0k�1(2tM). If M 6 jN ,then F learly annot appear in Sk=2(4N;�), so suppose M j N . WriteN =M 0q�11 � � � q�rr , splitting o� all primes qi not dividingM , where �i =ordqi(N) for i = 1; : : : ; r. There is no harater-dependene in the traeidentity when the prime exponents are odd, so put bN = Mq�11 � � � q�rr ,with M =QpjM 0 p�p where �p � max f3; ordp(M 0)g and odd.By hypothesis, F does not appear in Sk=2(4M;�) for any even qua-drati Dirihlet harater � modulo 4M , so by repeated appliation ofTheorem 5.6 on the primes qi, F does not appear in Sk=2(4 bN; ) for anyeven quadrati Dirihlet harater  modulo 4 bN . Sine N j bN and theyhave the same prime fators, any even quadrati Dirihlet harater �0modulo 4N an be obtained from a hoie of  , viewed as a haratermodulo 4N . The usual ontainment relations among spaes of modularforms then show that F does not appear in Sk=2(4N;�0). �Proof of Theorem 5.6. Suppose a newform F 2 S0k�1(2tM) does notappear inSk=2(4N;�), for some odd positive integer N and some even quadratiDirihlet harater modulo 4N . Let q be an odd prime suh that q 6 jM ,and let �q = ordq(N).Case 1: �q = 0. Using Theorem 3.3 and methods previously dis-ussed, one omputes thattr� eTk=2(n2) j �Sk=2(4N;�)�� = Xdj2N Æ (2N=d) tr�Tk�1(n) j �S0k�1(d)��+ X0L0 CL0;uptr�WL0Tk�1(n) j �S0k�1(2tNtp;up)��andtr� eTk=2(n2) j �Sk=2(4Nq; �0)�� = 1Xv=0(2�v)h Xdj2N Æ (2N=d) tr�Tk�1(n) j �S0k�1(dqv)��+ X0 CL0;uptr�WL0Tk�1(n) j �S0k�1(2tqvNtp;up)��iwhere(1) X0L0 denotes the followingmultiple sum: Xsquares L01<L0jN XpjL00�tp�[ap2 ℄ Xpj2L10�up�bp.



HECKE STRUCTURE OF SPACES OF CUSP FORMS 23(2) CLo;up and Ntp;up are de�ned as follows: For eah L0, put ap =ordp(K0) for eah prime dividing p j L0 and put bp = ordp(2K1)for eah prime p j 2L1. For integers tp and up with 0 � up � bpand 0 � tp � �ap2 �, putCL0;up =YpjL0�1 + ��np �� Ypj2L1(bp�up+1) and Ntp;up =YpjL0 p2tp Ypj2L1 pupThese two trae identities are almost idential; the main distintionis the appearane of qv in the levels in the seond. The deompositionS0k�1(2tqvNtp;up) = Snk�1(2tqvNtp;up) � Sn?k�1(2tqvNtp;up) is blind to qv,sine v = 0 or 1 and only prime divisors with exponents equal to 2a�et the nature of Sn. Therefore, the redution of the respetive traeterms to eliminate allW -operators will be parallel, with the fator of qv\along for the ride" in the levels of the seond identity. Therefore, sineF does not appear in Sk=2(4N;�), when we introdue the additionalprime q into the level and look at the v = 0 terms in the trae expressionfor Sk=2(4Nq; �0), we see that F does not appear in Sk=2(4Nq; �0).Case 2: �q = 2b + 1 for some nonnegative integer b. We provethat if F does not appear in Sk=2(4N;�), then F does not appear inSk=2(4Nq2; �00) for any even quadrati Dirihlet harater �00 modulo4Nq2, in order to avoid the issue of harater-dependene in the traeidentity. Then by the usual ontainment relations, F does not appearin Sk=2(4Nq; �0).In transforming the trae identity for tr� eTk=2(n2) j �Sk=2(4N;�)��into an isomorphism for Sk=2(4N;�), we must ombine ertain terms todetermine the summands at any spei�ed level. The way in whih theseterms ombine produes Legendre symbol fators in the oeÆientswhih depend on the level, and gives us some onstant multiple of thebasi \building blok" of forms ourring at that level. PutPN;q2 = tr� eTk=2(n2) j �Sk=2(4Nq2; �00)��� tr� eTk=2(n2) j �Sk=2(4N;�)��:Then tr� eTk=2(n2) j �Sk=2(4Nq2; �00)�� = PN;q2+tr�eTk=2(n2) j �Sk=2(4N;�)��.To relate the deompositions of Sk=2(4Nq2; �00) and Sk=2(4N;�), wemust ompare the struture of the expressions for tr�eTk=2(n2) j �Sk=2(4N;�)��and PN;q2 in terms of newforms. In partiular, we must show that inadding PN;q2 to tr� eTk=2(n2) j �Sk=2(4N;�)��, we add a onstant mul-tiple of the entire \building blok" at any spei�ed level in order toprove that we introdue no additional forms.We introdue abbreviated notation whih ondenses the trae expres-sions, yet still illustrates the behavior at eah level. Write N = N 0q2b+1



24 SHARON M. FRECHETTE(so that q 6 jN 0) and put p = ordp(2N 0) for eah prime p j 2N 0. Forintegers v with 0 � v � 2b + 3, de�neXN 0;v = Xpj2N00�up�bp Ypj2N 0(p � up + 1)tr�Tk�1(n) j �S0k�1(qv Ypj2N 0 pup)��+X0L0 CL0;uptr�WL0Tk�1(n) j �S0k�1(qvNtp;up)��with X0L0 , CL0;up and Ntp;up as in Case 1. Sine our expressions willoften di�er only by an additional W -operator, also de�neWQ [XN 0;v℄ = Xpj2N00�up�bp Ypj2N 0(p � up + 1)tr�WQTk�1(n) j �S0k�1(qv Ypj2N 0 pup)��+X0L0 CL0;uptr�WQWL0Tk�1(n) j �S0k�1(qvNtp;up)��Lemma 5.8. With the abbreviated notation and terminology as above,we have the following expressions in terms of newforms:tr� eTk=2(n2) j �Sk=2(4N;�)�� = 2b+1Xv=0 (2b�v+2)XN 0;v+�1+��nq ��hbXN 0;0+ bXv=1(b�v+1)Wq2v [XN 0;2v℄ iandPN;q2 = XN 0;2b+3 + 2 2b+2Xv=0 XN 0;v + �1 + ��nq ��hXN 0;0 + b+1Xv=1Wq2v [XN 0;2v℄ iProof. By Theorem 3.3,tr� eTk=2(n2) j �Sk=2(4N;�)�� = tr�Tk�1(n) j �Sk�1(2N)��+XL00 YpjL00 �1 + ��np ��tr�WL00Tk�1(n) j �Sk�1(2L00L01)��where L00 runs over all squares 1 < L00 j N with orresponding L01 =NQpjL00 p�ordp(N). Let L0 denote a square divisor of N 0 with L0 6=1, and put L1 = N 0QpjL00 p�ordp(N). We then have L00 = L0; q2`; orL0q2` for some L0 and some ` = 1; 2; : : : ; b, with orresponding L01 =L1q2b+1; N 0; or L1 respetively. After rewriting the trae expressionabove in terms of L0, straightforward omputation using Proposition2.2 yields the desired expression. The proof for PN;q2 is analogous. �



HECKE STRUCTURE OF SPACES OF CUSP FORMS 25Notie that the terms �1 + ��nq ��Wq2b+2 [XN 0;2b+2℄ + 2XN 0;2b+2 +XN 0;2b+3 appear in PN;q2 but not in tr� eTk=2(n2) j �Sk=2(4N;�)��. Asidefrom these terms, we are adding onstant multiples of existing terms,with the onstants independent of 2N 0. It remains to show the followinglaims:(1) The terms �1 + ��nq ��Wq2b+2 [XN 0;2b+2℄ + 2XN 0;2b+2 +XN 0;2b+3give no ontribution at levels dividing 2N 0.(2) For terms in tr�eTk=2(n2) j �Sk=2(4N;�)�� giving ontributionat any partiular level dividing 2N 0, we have added the sameonstant multiple of eah term, thus preserving the struture ofthe deomposition at that level.Let d be a positive divisor of 2N 0. Sine S0k�1(d) j Rq � S0k�1(dq2) andone piee of the oeÆient �1 + ��nq �� \twists in" to eliminate the Rqtwist, we will get ontributions at level d from the term �1 + ��nq ��Wq2 [XN 0;2℄.Clearly we also get ontributions at level d from the term XN 0;0. How-ever, XN 0;2v for v 6= 0 and �1 + ��nq ��Wq2v [XN 0;2v℄ for v 6= 1 involveonly terms whose levels are divisible by q. Thus they give no ontribu-tions at levels dividing 2N 0. This proves the �rst laim.To prove the seond laim, we need the followingLemma 5.9. With the notation and terminology as above, we have�1 + ��nq ��Wq2 [XN 0;2℄ = XN 0;0 + E(q; Rq)where E(q; Rq) is a sum of terms of levels divisible by q and/or twistedby Rq, hene no terms in E(q; Rq) ontribute at levels dividing 2N 0.Proof. We haveS0k�1(q2 Ypj2N 0 pup) = M
2=A+B+C Snk�1(N(B;C)) j RB+Cwith 
2 and N(B;C) as in Proposition 2.3. Our interest is limitedto those summands where q 6 jN(B;C), for only these will give on-tributions at levels dividing 2N 0. By onstrution, q 6 jN(B;C) oursonly when q 2 C. After the usual manipulations to eliminate the Wq2-operators and twist in oeÆients of �nq�, and after separating outterms involving subspaes Snk�1(N(B;C)) j RB+C where q j N(B;C),we have:



26 SHARON M. FRECHETTE�1 + ��nq ��Wq2 [XN 0;2℄= Xpj2N00�up�bp Ypj2N 0(bp � up + 1) tr�Tk�1(n) j � M
2=A+B+Cq2C Snk�1(N(B;C)) j RB+C�fqg��+ X0L0 CL0;up tr�WL0Tk�1(n) j � M
02=A0+B0+C0q2C0 Snk�1(N(B0; C 0)) j RB0+C0�fqg��+E(q; Rq)with E(q; Rq) as above. The set of partitions 
2 = A + B + C withq 2 C is preisely the set of partitions of 
2 � fqg. ThusM
2=A+B+Cq2C Snk�1(N(B;C)) j RB+C�fqg = S0k�1( Ypj2N 0 pup)The diret sum over partitions of 
02 is handled similarly, and by thede�nition of XN 0;0, we obtain the result. �By Lemmas 5.8 and 5.9, we see that adding the expression in termsof newforms for PN;q2 to that for tr�Tk�1(n) j �Snk�1(4N)���, we add3b + 5 opies of XN 0;0 to the existing b + 1 opies. Therefore we haveadded the same onstant multiple of eah term at any level dividing2N 0, with the onstants being independent of 2N 0 (note that XN 0;0 isthe aforementioned \building blok").Case 3: �q = 2b + 2 for some nonnegative integer b. Write N =N 0q2b+2. F does not appear in Sk=2(4N;�00) = Sk=2(4N 0q2b+2; �00) forany even quadrati �00, hene by ontainment relations, F does notappear in Sk=2(4N 0q2b+1; �0) for any even quadrati �0. Then F doesnot appear in Sk=2(4N 0q2b+3; �) = Sk=2(4Nq; �) for any even quadrati� by ase 2. This ompletes the proof of Theorem 5.6. �5.4. Connetions Between These Results and Fliker's The-orem. Restriting our attention to Sn(2tM), Theorem 5.2 allows usto identify ertain forms whih are \missing" from deompositions forSk=2(4M;�). For example, when p � 1 (mod 4), any subspaes with aoeÆient of 1���1p � will not appear. These will also be missing fromSk=2(4N;�) for any odd N and any even quadrati Dirihlet harater� modulo 4N , by Corollary 5.7. As a onsequene, Corollary 5.1 har-aterizes in terms of lassial invariants those integral weight newformsF 2 Snk�1(2tM) whih have equivalent half-integral weight usp formsat some level 4N with N odd. This is a partial reformulation of arepresentation-theoreti result of Fliker's [5℄ regarding Sk=2(4N;�; F ):



HECKE STRUCTURE OF SPACES OF CUSP FORMS 27Theorem. [Fliker℄ [5℄ Let (H1) denote the following ondition on thepth omponents �p of the automorphi representation � assoiated toF : For all primes p suh that �p is of the prinipal series, �1;p(�1) =�2;p(�1) = 1, where �1;p and �2;p denote the haraters of Q�p suhthat �p � �(�1;p; �2;p). Then there exists N with Sk=2(4N;�; F ) 6= f0gif and only if (H1) is satis�ed.We have rephrased these representation-theoreti onditions in termsof the prime-powers in the level of the form F and in terms of theWq-eigenspae for F with respet to those primes ourring with evenexponent. At present, we have reformulated Fliker's theorem only inthe ase F 2 Snk�1(2tM), sine Theorem 5.2 and Corollary 5.5 onlyheld for newforms in Snk�1(2tM). However, areful examination of thefull deompositions when M has one or two distint prime fators re-vealed ertain patterns in the appearane of the twist terms. Evidenesuggests that the appearane of subspaes of Sn?k�1(2tM) in the deom-position of Sk=2(4M;�) may follow a pattern similar to the one observedat level 4pm:Reall that for any hoie of nonempty subset B � 
2, the spaeSn?k�1(2tM) ontains summands Snk�1(2tYq2B q�q Yp2A�B pbp) j RB where Ais the set of prime divisors of M , �q = 0 or 1, and RB = RQq2B q. Theevidene disussed above suggests the following:(1) When E = fp jM : bp � 2 is eveng = B, the entire spaeSnk�1(2tYq2B q�q Yp2A�B pbp) j RE � Sn?k�1(2tM) should appear inthe deomposition of Sk=2(4M;�). Its oeÆient struture withrespet to U = fp j M : bp = 1g and O = fp j M : bp �3 is oddg should parallel that of ase (1) in Theorem 5.2. Ad-ditionally, we expet some Legendre symbol oeÆients withrespet to E to our.(2) When E 6= B, subspaes S(p�p�p)p2E�Bk�1 (2tprodq2Eq�q Yp2A�B pbp) jE�Sn?k�1(2tM) should appear in the deomposition of Sk=2(4M;�).Their oeÆient struture with respet to U and O should par-allel that of ase (2) in Theorem 5.2. Additionally, we expetdi�erent Legendre symbol oeÆients with respet to B andE �B.The theory ontained in this setion also has a onnetion to an im-portant result of Waldspurger's: When (H1) is satis�ed, Waldspurger



28 SHARON M. FRECHETTE[17℄ gives a means of onstruting Sk=2(4N;�; F ) expliitly, by �rstidentifying eN , the minimal N for whih this spae is nonzero, andthen analyzing ases depending on eN and the level of F . There aremany ases to onsider, and the onditions given in some ases involvea great deal of omplexity. Alternatively, we determine eN in terms ofthe subspae S(p�p�p)p2Ek�1 (2tM) to whih F belongs.6. Examples: Non-zero Newforms F with Sk�1(4N;�; F ) = 0Our results raise the following question: Do the \missing subspaes"have positive dimension? That is, are there nonzero forms whih arenot in the image of the Shimura lift for Sk=2(4N;�) for any odd posi-tive integer N and any even quadrati Dirihlet harater �? We giveexamples when k = 3 whih show that the answer is yes. These areomputed using Cremona's tables [4℄ whih list the following identify-ing information for rational newforms F 2 S0k�1(M):(1) The Heke eigenvalues �p of F for T2(p) when p 6 jM and p �100.(2) The eigenvalues, either +1 or �1, of F for Wq when q jM andq � 100.To utilize this information, suppose F (z) = P1n=1 a(n)e2�inz is anormalized newform in S0k�1(M). For a prime p j M , we then haveF j Rp = P1n=1 b(n)e2�inz where b(n) = �np�a(n). If pjM , b(n) = 0.Otherwise, orresponding a(n) and b(n) an di�er only in sign, andwill di�er preisely when n is a quadrati non-residue modulo p. Sinea(n) = �n, the eigenvalue of F for the Heke operator T2(n), we havea relationship between the Heke eigenvalues of F and those of F j Rp.We an therefore make use of the eigenvalue information in the tablesto determine whether F 2 Sn2 (M) or F is the twist of some newformof lower level. Moreover, if F 2 Sn2 (M), we an then determine thesubspae of Sn2 (M) to whih F belongs with respet to a prime p j M(i.e. whether F 2 Sp++2 (M), et.).Example 6.1. Using this method, we have dim(S13��2 (338)) � 2:Cremona lists 6 distint rational newforms of level 338, alled 338Athrough 338F , so dim(S2(338)) � 6. In omparing the Heke eigenval-ues of 338A through 338F to the orresponding eigenvalues of the formslisted at level 26 = 2 � 13, we see that 338C and 338F are both twists byR13 of newforms of level 26. Investigation of the Heke eigenvalues asabove shows that 338A j R13 = 338B and 338D j R13 = 338E, so thesefour are in Sn2 (338). Cheking the sign of the W13-eigenvalue for eah



HECKE STRUCTURE OF SPACES OF CUSP FORMS 29form, we �nd that 338A and 338B are in S13++2 (338), while 338D and338E are in S13��2 (338). Thus dim(S13��2 (338)) � 2.Example 6.2. Similarly, we have dim(S19�+2 (722)) � 1.We have given examples of missing subspaes with positive dimen-sion, of both the p�� and p�+ types. In omputing with Cremona'stables for forms in S02(p2) with p an odd prime less than 100, it was notpossible to show that any of the missing spaes had positive dimen-sion. However, extended tables for levels 1001 � N � 5000 given onCremona's webpage led to the omputations that dim(S37��2 (372)) � 2and dim(S43�+2 (432)) � 1. Cremona's tables deal only with rationalnewforms, and with more omplete information it may be possible toobtain examples at levels p2 for smaller primes.7. ConlusionIn this paper, we have examined the Heke struture of spaes ofhalf-integral weight usp forms by \looking bakwards" through theShimura orrespondene. Our partial deompositions for Sk=2(4N;�)and V3=2(4N;�) gave important information about the image of theShimura lift. Deompositions in ertain ases illustrated the relation-ship between the Kohnen subspae and the full spae of usp forms.Certain results were restrited to newforms in Snk�1(2tM) for t = 0; 1andM an odd positive integer, although possible methods for obtaininganalogous results for newforms F 2 Sn?k�1(2tM) were disussed.Several interesting question are raised by these results. First, areall the missing spaes of newforms in these deompositions positive-dimensional? (we have seen some examples in Setion 6). Sine thetrae of the Heke operator T1 on any spae S of integral weight uspforms is equal to the dimension of S, omputing the trae of T1 onSp��k�1 (2tM) and Sp�+k�1 (2tM) an provide the answer. This omputationis urrently being pursued, using the formulas for traes of Tn and ofthe omposition WpTn on S0k�1(2tM) given in Ross [10℄ and Yamauhi[18℄ respetively.Seond, is the Shimura lift always non-surjetive? Determining di-mensions of the missing spaes of newforms in general may provideadditional examples of non-surjetivity for other values of k when N isodd. Additionally, extending our deompositions to the ase of arbi-trary N would be a step towards answering this question. This wouldrequire additional trae identities, as Theorem 3.3 is only equipped to



30 SHARON M. FRECHETTEhandle levels where ord2(N) is at most two. Trae relationships han-dling almost all ases of ord2(N) are given by Ueda in [16℄, and ouldbe used to obtain suh deompositions via similar methods.Perhaps most interestingly, what exatly is the signi�ane of the�1-eigenspae of the Wp operator? Our results indiate that forms inthis eigenspae for some p dividing their level may not have equivalenthalf-integral weight forms. To gain insight into this question we appealto the theory of L-series: The sign in the funtional equation for theDirihlet L-series L(F; s) assoiated to an integral weight form F 2S0k�1(N) is determined by the Frike involution HN , a omposition ofWp operators for all p j N . When this sign is �1, L(F; s) vanishesfor the value of s in the enter of the ritial strip. If F has weight2 and integral oeÆients, it an be shown that L(F; s) = L(E; s)for some ellipti urve E over Q, and the Birh{Swinnerton-Dyer [3℄onjeture states that the rank of the assoiated ellipti urve E isequal to the order of vanishing in the funtional equation for L(E; s).The �1-eigenspae of Wp plays a role in these vanishings, and we hopeto develop a greater understanding of this role.Referenes[1℄ A.O.L. Atkin and J. Lehner, Heke Operators on �0(m), Math. Ann., 185(1970), 134{160.[2℄ A.O.L. Atkin and W. Li, Twists of newforms and pseudo-eigenvalues of W -operators, Invent. Math., 48 (1978), 222{243.[3℄ B.J. Birh and H.P.F. Swinnerton-Dyer, Notes on ellipti urves I and II, J.reine angew. Math., 212 (1963), 7{25 and 218 (1965), 79{108.[4℄ J.E. Cremona, Algorithms For Modular Ellipti Curves, Cambridge UniversityPress, 1992.[5℄ Y. Fliker, Automorphi forms on overing groups of GL(2), InventionesMath., 57 (1980), 119{182.[6℄ H. Hijikata, A. Pizer and T. Shemanske, Twists of Newforms, J. Num. Theory,35 no. 3 (1990), 287{324.[7℄ W. Kohnen, Newforms Of Half-Integral Weight, J. reine angew. Math., 333(1982), 32{72.[8℄ W. Li, Newforms and funtional equations, Math. Ann., 212 (1975), 285{315.[9℄ A. Pizer, Theta series and modular forms of level p2M , Compositio Math., 40(1980), 177{241.[10℄ S. Ross, A Simpli�ed Trae Formula for Heke Operators for �0(N), Trans.Amer. Math So., 331 (1992), 425{447.[11℄ H. Saito and M. Yamauhi, Trae Formula of Certain Heke Operators for�0(q�), Nagoya Math J., 76 (1979), 1{33.[12℄ G. Shimura, On Modular Forms of Half-Integral Weight, Annals of Math., 97(1973), 440{481.[13℄ T. Shintani, On Constrution of Holomorphi Cusp Forms of Half IntegralWeight, Nagoya Math. J., 58 (1975), 83{126.
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