theory of modular forms.

A CLASSICAL CHARACTERIZATION OF NEWFORMS WITH
EQUIVALENT EIGENFORMS IN S;.,;/(4N, x)

SHARON M. FRECHETTE

ABSTRACT. We continue our investigation, begun in [8], of the Hecke structure of spaces of
half-integral weight cusp forms Sy1/2(4N, x), where k and N are positive integers with N
odd, and yx is an even quadratic Dirichlet character modulo 4N. In the Hecke decomposition
of these spaces, we determine contributions arising from newforms which are quadratic twists
of newforms at lower levels. Combining this result with its counterpart in [8] regarding non-
twists gives this paper’s main result: necessary and sufficient conditions under which a given
newform has equivalent cusp forms in Sy1;/2(4N, x). Our result reformulates, in classical
terms, the representation-theoretic conditions given by Flicker [7] and Waldspurger [32].
Our conditions involve easily-verified information about the primes dividing the level of the
newform, and about the behavior of the newform under certain quadratic twists and Atkin-
Lehner involutions. We apply our theorem to give explicit examples of twisted newforms
having no equivalent half-integral weight cusp forms in any space Sj1/2(4N, x) as above.

1. INTRODUCTION

The study of simultaneous Hecke eigenforms, particularly newforms, is central to the

integral weight cusp forms, as modules for the algebra generated by the Hecke operators.
This Hecke structure is complex by comparison with the integral weight case: It is well-
known that an integral-weight newform is determined up to constant multiple by its Hecke

eigenvalues for almost all primes. As a consequence of this strong multiplicity-one result, we

have the following decomposition of the space of cusp forms in terms of newforms:

Sok(N) = @ o(N/d) Sy, (d)

N
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Results in this paper concern the structure of spaces of half-



2 SHARON M. FRECHETTE

where d runs over positive divisors of NV, and o is the divisor function. By contrast, we cannot
express the Hecke structure of all spaces of half-integral weight cusp forms as succinctly; this
is due to the lack of an analogous multiplicity-one result on the full space of newforms. One
alternative in this case is to refine the space of half-integral weight newforms, obtaining
a subspace in which a newform is determined by its Hecke eigenvalues. In [14], Kohnen
produced such a refinement when the odd part of the level is squarefree. In several papers
including [30] and [31], Ueda considered newforms of arbitrary level. As a function of the
level, he determined the subspace on which a strong multiplicity-one result holds, thus

providing a robust theory of newforms of half-integral weight.

A second approach is to focus on the full space of newforms, determining the multiplicity
of distinct Hecke eigenforms with the same eigenvalues for almost all primes. This approach
was taken by Shemanske in [23], and Shemanske & Walling in [24], in the case where the odd
part of the level is squarefree. A related approach was taken by Ueda in [28], in the context
of the Kohnen subspace. Ueda used trace identities to decompose the Kohnen subspace
in terms of a direct sum of spaces of integral weight newforms. These “decompositions”
are isomorphisms between modules for the Hecke algebras and therefore preserve Hecke
eigenforms. Thus the Hecke structure of the half-integral weight space is determined by

“pulling back” information from the integral weight side of the isomorphism.

In [8], we proved decompositions for the full space of half-integral weight cusp forms
under certain conditions, utilizing Ueda’s methods. We focused on Si1/2(4p™, x) with p an
odd prime, m a positive integer, and x an even quadratic Dirichlet character modulo 4p™.
Providing complete decompositions in the case of more general levels is computationally
arduous. However, partial decompositions have led to this paper’s main result: classical
conditions which determine whether a given newform F' has equivalent half-integral weight

cusp forms in any space Si1/2(4N, x) for which N is odd, and x is even and quadratic. This
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theorem reformulates, in the setting of classical modular forms, well-known results of Flicker
and Waldspurger. Flicker [7] uses the pth components of the automorphic representation
associated to F' to state a necessary and sufficient condition (H1) under which F' will have
equivalent half-integral weight cusp forms at some level N, although his result does not
characterize this level. When a second condition (H2) is also satisfied, Waldspurger [32]
gives a means of constructing the subspace of half-integral weight cusp forms at a given level
N which are equivalent to F'. Waldspurger’s method is complex however, and his result does

not determine all levels for which this space will be nonzero.

Our result determines these levels explicitly. In particular, it gives the minimal level
at which F has an equivalent half-integral weight cusp form. This is achieved using easily-
verified conditions on the primes dividing the level of F', and the behavior of F' under certain
quadratic twists and Atkin-Lehner involutions. In Corollary 5.1 of [8], we proved this result
in the case where the newform F' is not the quadratic twist of any newform of lower level. In
this paper, we prove the remaining case, thereby completing the theorem. Using tables of
Cremona [5], [6] we provide examples of nonzero newforms which have no equivalent forms

in any space Sk41/2(4N, x), under the above restrictions on N and x.

The Hecke theory behind this paper’s main result has exciting implications regarding the
nonvanishing of L-functions associated to quadratic twists of newforms: Suppose a nonzero
newform F' satisfies Flicker and Waldspurger’s (H1) and (H2) conditions, and that a half-
integral weight cusp form g is equivalent to F. As shown by Waldspurger [32], the Fourier
coefficients of g are proportional to the central values of the L-functions L(Fp, s) associated
to quadratic twists of F' by fundamental discriminants D. Knowing the minimal level of such
a cusp form g allows us to determine a lower bound on the smallest D for which this central
value is nonzero. Through connections with work of Ono & Skinner [19], we aim to show that

a positive proportion of fundamental discriminants D with a specified small number of prime
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factors satisfy the condition that the central value L(Fp, k) is nonzero. (Preliminary results
have been promising). This will provide a link between these Hecke structure results and
the work of many, including Bump, Friedberg & Hoffstein, [4], [9], Goldfeld [10], Hoffstein
& Luo [12], James [13], Kohnen [15], and Kohnen & Zagier [16], who have made significant

contributions to fully characterizing those D for which L(Fp, k) # 0.

2. STATEMENT OF MAIN THEOREM

Before stating our main result (Theorem 2.1), we must first establish some notation and
terminology. Let k£ and M be positive integers with M odd, and let ¢t € {0,1}. Let Sox(2°M)
be the space of cusp forms of weight 2k and level 2°M, and S9, (2! M) the subspace generated
by the newforms. For each positive integer n relatively prime to 2!M, consider the Hecke
operator Ty, (n) acting on Sor(2°M). For each positive integer @ with (Q,2°M/Q) = 1, let
W¢ denote the Atkin-Lehner involution, and write W, if Q) is a power of a single prime ¢. Let
R, denote the twisting operator with respect to the Dirichlet character x, and write R, if x is
the Legendre symbol modulo p. In the half-integral weight setting, let Si1/2(4N, x) denote
the space of cusp forms of weight k£ + 1/2, level 4N and Dirichlet character x modulo 4N.
For each positive integer n with (n,2N) = 1, consider the Hecke operator Ty /2(n?) acting
on Sky1/2(4N, x). Moreover, if £ = 1, restrict to the subspace V3,5(4N,x) C Ss/2(4N, x)
mapping to integral weight cusp forms under the Shimura correspondence. (For definitions

and further details, see [17], [30], and [28].)

A newform F' € Sy(2N) is equivalent to a cusp form f € Ski1/2(4N,x) if f and F
are Hecke eigenforms whose corresponding eigenvalues are equal for almost all primes p.
That is, f | Tk+1/2(p2) = A\ f and F | Tox(p) = A\ F for almost all p, where A, € C. Let

Sk+1/2(4N, x, F') denote the subspace of Siy1/2(4N, x) consisting of all forms equivalent to
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F'. We have the following direct sum, taken over all newforms F' of levels dividing 2/NV:
Sk+1/2(AN, x) = @ Sk+1/2(4N, x, F)
F

We will need to characterize a newform F' € S9, (2°M) according to two conditions. The
first is whether F' is the quadratic twist of some newform of lower level. (For example,
the quadratic twist modulo p of a newform in S5, (1) or S, (p) yields a newform in S9, (p?),
by Theorem 6 of [1].) We decompose the space S9, (2°M) according to such twists: First,
let S& (2'M) denote the subspace of S5, (2°M) generated by all newforms which are not
quadratic twists of newforms of lower levels. Now consider all subsets B consisting of primes
g which divide M with ord,(M) = 2. Let Rp denote the quadratic twist by all primes in B.
For each prime ¢ € B, let v, € {0,1}, and put v(B) = {v, : ¢ € B}. Then for each choice of
B and v(B), consider the level

MB V(B) = H pordp(M) H q"

p|M,p¢B q€B
If we put S5, (2"Mp ,5) | R = {F | Rp : F € Sy,(2"Mp ,(5))}, then Theorem 6 of [1]
implies that S%,(2'Mp,,(p)) | Rp is contained in S9,(2°M). Note that if B = ), we simply
obtain S%, (2°M). Moreover, by Proposition (A8) of [30], we have the following direct sum

taken over all choices of B and v(B):

(1) S2k(2 M @ SQk 2 Mpg u(B)) | Rp

B,v(B)
For example, S5, (p?) = Sa,. (%) & S%.(p) | R, ® S9.(1) | R,. We will use Szi-(2!M) to denote
the direct sum of all terms except the B = ) term. (For further details see [8], Section 2.2.)
Secondly, we characterize F' by certain eigenvalues for the Atkin-Lehner involutions. If

F € S3.(2'M), we consider the eigenvalues of F' and of its twist F' | R, for each prime

p dividing M with ord,(M) > 2. For such a prime, let o, 3, € {1, —1} and define the
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following subspaces of S%, (2'M):
She(2'M) = {F € S5, (2'M) : F | W, = a,F and F | R, | W, = 8,F | R,}
(These subspaces first appeared in [22], denoted S, Si1, Siz,, and Sy7r.) One shows that
SREM)= D SErEM)
ap,Bpe{l,—1}
On the other hand, if F € S (2°M), then F = G | Rp for some choice of B and some
newform G € S5, (Mp,,(p)). In this case, we decompose S5, (Mp, ,(p)) similarly with respect

to any prime p dividing Mp () with order at least two, and instead characterize F' by the

Atkin-Lehner eigenvalues of its related newforms G and G | R,.

We now state our main theorem giving classical conditions under which a newform F' in

S9,(2'M) has equivalent cusp forms in Siy1/2(4N, X):

Theorem 2.1. Let F' € S, (2'M) with M odd and t € {0,1}, and let S, (2'Mp ,5)) | Rp
and Sk+1/2(4N, x, F) be as given above. Then Spi1/2(4N, x, F) = {0} for all odd positive
integers N, and all even quadratic Dirichlet characters x modulo 4N, if and only if the

following conditions hold:

In the case F € S3,(2'M):

At least one prime p dividing M has ord,(M) even, and for any such prime p,

eitherp=1 (mod 4) and F € S5, ~(2'M)

orp=3 (mod4) and F € S5 "(2'M)

In the case F € S5, (2"Mp, ,(p)) | Rp for some nonempty B:

(1) vy =0 for at least one q € B satisfying ¢ = 3 (mod 4), OR
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(2) At least one prime p dividing Mg, ,(p) has ord,(Mp, ,(p)) even, and for any such prime
Y&
eitherp=1 (mod 4) and F € Sy, (2'Mp,(p)) | Rs
orp=3 (mod4) and F € Sgk_Jr(?tMB,,,(B)) | Rp

In the event that Spi1/2(4N, x, F) # {0}, the minimal level for this occurs when N = M.

Remark. We established the conditions in the case F € S5, (2'M) in Corollary 5.1 of [8].
The conditions in the case F' € S3,(2'Mp ,(p)) | Rp are new and follow from the Hecke
structure result given below in Theorem 4.1. (Corollary 4.4 part (1) establishes that these

are the only possible cases.) a

3. PRELIMINARIES

Theorem 2.1 relies upon the ability to decompose a space of cusp forms Sk1/2(4N, x) of
given level and character in terms of its Hecke eigenforms. These decompositions take the
form of isomorphisms between Sji1/2(4N, x) and direct sums of spaces of integral weight
newforms. They are obtained using trace identities, as described below:

Let tr(T | V) denote the trace of an operator T on a vector space V. If we have subspaces

Shaty € Sk+1/2(4N, x) and Sypoe € S2x(2N), then as described in [11], it can be shown that

tr(fk+1/2(n2) | Shaif) = tr(Tog(n) | Swhote) for all n with (n,2N) =1
<= Shaif = Swhoe as modules for the algebra generated by all the Hecke operators

By explicitly calculating ¢r (TkH 2(n?) | Sk41/2(4N, X)) in the case where (n,2N) =1 and x

is even and quadratic, Ueda [28] established the following identities:

Theorem 3.1. (Ueda [28]) Let N be a positive integer such that 2 < ordo(N) = p < 4 and

put M = 27#N. Let x be an even quadratic Dirichlet character modulo N and suppose that
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the conductor of x s divisible by 8 if u = 4. Then for k > 5 and for all positive integers n

with (n, N) =1 we have the following relation:

tr (Tiyr2(n?) | Sk1/2(N, x)) = tr(Tor(n) | Sar(N/2))

+ ZA(TL, Lo)tT(WLOTQk(n) ‘ Szk;(Q'u_lLOLl))

Lo

and for k = 3 we have the following relation:

tr(T3/2(n2) | Vaj2(N, x)) = tr(Ta(n) | SQ(N/2))+Z A(n, Lo)tr (Wi, Ta(n) | S2(2#7'LoLy))

Lo

where

(1) X_p, runs over all square divisors Ly of M with Ly > 1,
(2) to each Lgy the corresponding Ly is given by L = MHP|L0 p "% M) - and
(3) the constant A(n, Ly) is defined as follows:

A(n, Lo) = [ [ Mp, n; ordy(Lo) /2), with

p|M
1 ifa=0
Alp,m; a) = 1+(—7f‘) iflgag[%]
Xp(—7) if ord,(N) is even and a = 7‘””“!1’2(]\7)

In [8], we used this identity to construct full decompositions for Sy 1/2(4p™, X), where p
is an odd prime and m > 0. While we are able to provide full decompositions for other
specified levels, the computations are arduous with several primes dividing the level. In
proving Theorem 2.1 however, full decompositions are not needed. We require only the

following chain of results:

(1) Given a newform F € S5, (2!M), Theorem 4.1 below tracks the “appearance” of F
in the decomposition of Sy /2(4]\//_7 ,X), where M is any odd positive integer with

the same prime factors as M, each occurring to odd exponent at least 3, and where



CHARACTERIZING NEWFORMS WITH EQUIVALENT EIGENFORMS IN Sj1/2(4N, ) 9

X is any even quadratic Dirichlet character modulo AM. We proved this result for

F € S5 (2!M) in Theorem 5.2 of [8]. The proof for F' € Si-(2!M) is given below.

(2) The dimension of Si1/2 (4]\/4\ , X, F') is given by the multiplicity with which F" appears

in the decomposition of Sk+1/2(4]\7, X), as shown in Corollary 4.4 below.

(3) Introducing additional prime factors to increase the level of the space of half-integral
weight forms does not result in any additional appearances of the newform F'. That is,
if N is any odd positive integer divisible by M , then F' appears in the decomposition
of Skt1/2(4N, x) if and only if it appeared in the decomposition of Sii4 /2(4J\/4\ ,X)-
We proved this result for any F' € S5, (2!M) in Theorem 5.6 & Corollary 5.7 of [8].

In proving the decomposition results in Theorem 4.1, we must eliminate all W-operators
from Ueda’s trace identity for Sk, /2(4]\//7 ,X). There are several necessary tools for doing

this. We first require the commuting relationships given below:

Proposition 3.2. ([1], [2], [30]) Let N,n, and k be positive integers, let ¥ be a quadratic
Dirichlet character of conductor fy, and let Q@ be a positive divisor of N with (Q, N/Q) = 1.
For any F € Sop(N), the following hold:

(1) If (n,Nfy) =1, then F | Ry | Tox(n) = 9p(n)F | Tax(n) | Ry.
(2) [f (n, N) = 1, then F | Tzk(n) | WQ =F | WQ | Tzk(n)
(3) If (Q,fw) = 1, then F | Rw | WQ = w(n)F | WQ | Rw.

(4) If Q' is another divisor of N such that (Q',QN/Q') =1, then
F|Wo |Wo=F|Wgq=F|Wq|Wq.

Moreover, if N = p” M, with p an odd prime not dividing M, and v € {0,1}, then

(5) F | Ry | Wy = (2)F | R,
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We must also express the Lg-sums from the trace identity in terms of traces of W-operators

on spaces of newforms. This is done using the following:

Proposition 3.3. (Ueda [30]) Let A, B be finite sets consisting of primes such that ANB = )
and also let ¢, forp € A, and m, for ¢ € B be any non-negative integers. Then for a positive

integer n relatively prime to HpeA pb quB g™, we have the following identity:

tr (WgTak(n) | S Hp P H qm))

pEA q€B
= Y. > HG+1-vw)tr(WsTu(n) | (][ ][ a™*)
(tg)geB (vp)peca PEA iy B

0<ty<[mq/2] 0<vp<ly
We must then decompose the spaces S5, (2°M), isolating the subspace S% (2°M) closed
under quadratic twists, and the subspaces S3,(Mg, ,(5)) | Rp as defined above. We must
further split S& (2°M) into eigenspaces depending on each odd prime p dividing M with

ord,(M) > 2. Let Q denote the set of all such primes. Then define
Siresbrleea (Ny = (F € ST (N) : F | W, = a,F, and F | R, | W, = B,F | R,, for all p € Q}
where a,, 5, € {1, —1} for each prime p € Q. It is easy to see that
@ St (papfp) peq ()
where the direct sum is taken over all possible choices for the tuple (pa,5,)peq-
We will have need of the following properties regarding the subspaces defined above:

Proposition 3.4. ([8], [30]) Let N be a positive integer with ord,(N) > 2 for some odd
prime p. The subspaces Sg,?”ﬂ” (N) as defined above behave under the action of the Hecke
operators To,(n), the involution W, and the twisting operator R, in the following way:
(1) Sg,?”ﬂp(N) is closed under the action of Tox(n) for oy, B, € {1, -1} and (n, N) = 1.
(2) Sg,?”ﬂp(N) is closed under the action of W, for ay, B, € {1,—1}, .
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(3) SEIT(N) and S5, ~(N) are both closed under the action of R,,
while S5~ (N) | Ry = S5, (N) and S5, (N) | R, = S5~ (N).

Proposition 3.5. ([8]) Let the notation and terminology be as above. Then each summand
S (Mg, ,p)) | Rp of S5i-(28M) is closed under the action of W, for each odd prime p | M.
Lastly, we will need to incorporate coefficients involving characters into our trace terms.

This can be done according to the following result:

Lemma 3.6. ([11], [20], [8]) Let k, N, M, and @ be positive integers and suppose that
(@, fy) = 1, where fy is the conductor of v, a primitive Dirichlet character modulo M.
Let N' = lem(N, M?). Then for all n satisfying (n, N') = 1:

(1) ¢(n)tr(Tox(n) | Sy (N)) = tr(Tox(n) | S3(N) | Ry)

(2) ¥(n) tr(WoTar(n) | S5(N)) = tr(WoTak(n) | S3,(N) | Ry).
Moreover, if 1 is quadratic, then

(3) ¥(n)tr(WoTar(n) | S5(N) | Ry) = tr(WoTak(n) | S3(N)).
4. HECKE STRUCTURE THEOREMS

As discussed in Section 3, proving Theorem 2.1 requires three main steps. The first step
is to track the “appearance” of newforms F' € S9, (2'M) in the decomposition of a certain
space of half-integral weight cusp forms, Si1 /2(4]\//_7 ,X)- Let t and M be as above. For each
prime p dividing M, put b, = ord,(M). Split the primes dividing M into the following three

sets:
U={p|M:b,=1} E={p|M:b,>2iseven} O={p|M:b,>3is odd}

Consider all subsets B as described in Section 3 (hence B C £), and consider levels M=
[T, p*, where each a, is an odd integer satisfying a, > max{3, ord,(M)}. Let x be any

even quadratic Dirichlet character modulo AM. Then we have the following
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Theorem 4.1. Let the notation and terminology be as above. For k > 2, the total contribu-

tion made by subspaces of Sop(2!M) in the decomposition of Sk+1/2(4]T/I\, X) is given by

PP P CEBuB)SE (2 Mp ) | Rs

BCE qeB pEE—B
vg=0,1 ap,Bp==%1

where the multiplicity C(€, B, v(B)) is given by

o€ BvB) = -0 ][] [T6[2]+n I (2] +1-2)

q€B pEU pEE—B

< [[ar+1-6) T (2+ay) +5p(_7) H(2+(2—uq)(_71))

peO peEE—B geEB

For k =1, the same result holds with Sk+1/2(4]/\4\, X) replaced by 1/;),/2(4]/\/[\, X)-

Remark. The multiplicity C(€, B,v(B)) depends, in particular, on whether F' is the
quadratic twist of a newform of lower level, and on whether ord,(A/) is even for any primes
p dividing M.

Also, in certain cases, this direct sum simplifies considerably. For instance, if £ = (), then
all sums and several products are trivial, and we simply have the contribution

@-0T16 %]+ (@ +1-b)s5M)

pEU peO®

Even for £ # (), certain summands may simplify. For instance, in the term with B = &,
we do not split the space S (2°Me, () | Re into subspaces depending on primes, since

E—-B=1. O

Proof. In Theorem 5.2 of [8], we previously established all contributions to the decomposition
of i1 /2(4]\//.7 ,x) which are made by the subspace S5, (2"M). (These constitute the B = ()

summands.) Proving Theorem 4.1 is therefore reduced to determining those contributions
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made by the subspaces S5 (2°Mp, ,(p)) | Rp for all nonempty B. This case is handled by
techniques similar to those used in [8]. In Proposition 4.3 below, we first isolate and simplify
all terms in the trace identity for Sk+1/2(4j/\4\, x) which contribute to S3,(2'Mp, () | Rp
for a fixed nonempty B. We then show by induction that these terms combine to give the

desired structure of coefficients and subspaces.

Ueda’s trace identity for Sii: /2(4]\/4\ ,X) includes summands for each square divisor Lg
of M. Applying Proposition 3.3, each Ly-term is expressed as a sum of traces on spaces
of newforms. In this sum, all primes dividing Ly will occur with even exponent in the
levels. Thus we may clearly disregard Lg-terms where any prime p € O divides Ly. For
convenience, we group the remaining summands by the set of prime divisors of Ly. For given
subsets Py, C U and Pz C &, we use “PyPg-sum” to refer to the sum of all Ly-terms for

which the set of prime divisors of Ly is Py U Pk.

Proposition 4.3. Let the notation and terminology be as above, and let A denote the full set
of prime divisors of M. Suppose B # (). For any subsets Py C U and Pg C &, the PyPg-sum
gives contributions to Sy, (QtMB, ,,(B)) | Rp for certain values of v,. The total contribution to

S55.(2°Mp,,(B)) | Rp for all values of v, is derived from:

Z Z (Pe, B) tr (Wegne—m) Tar(n) | S (2" H prqVq | Rp)

PcCE q¢eB pEA-B g€B
vg=0,1

where the coefficient K(Pg, B) is given by

K(Pe,B)= (-1 T] =TT [%] 1 (3[%]+1) [T@+1-0) T ([2]+1-%)

qeE—Pg  q€B peEU pe® peEE—B
—n -1
< I (1+(57) 1 e-w(7)
pEPeN(E—B) p qePgsNB q

Proof. The Py Pg-sum in Ueda’s trace identity for Sy, /2(4]/\/[\ ,X) is given by
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—n
0 (=(2) T etamemo se 1o 11 »
qeP,UPge q qEPyUPg qePUPg pEA
1<u<[%] p¢PyUPg
Applying Proposition 3.3 to convert to an expression involving spaces of newforms, and

combining the nested sums that result, we obtain

1

I (1+(_7"))Z(2—t) Y IMlar+1-w)

qEP,UPg t=0 PEA—(PyUPg) P
0<vp<ay
aq 0 (ot 2t
< >y (%] +r-w II [2]erwerwmisie T »> [
QCPyUPg €Q q q€E Py UPg pEA qeQ
1<t,<[%2] 7¢Q p¢PyUPg

Not every @-term gives contributions to S%,(2°Mp, ,(s)) | Rs. In fact, for a given P, and
Pg, we must make the following restrictions on Q:
(1) Py C@Q
(2) For all primes p in & — B (which may be empty), if p € Pg, then p € Q.
Clearly if ¢ € Py, then ¢ will appear in the level only if ¢ € Q) as well. Now instead suppose
p€ & —B. If p¢ Pg, then p¥ appears in the level and we need only choose the appropriate

value for v,. However if p € P¢, we must have p € () in order to get a power of p in the level.

We keep only the terms for which () satisfies both restrictions above. To represent this
in the notation, put @ = Py U Q¢, where Q¢ C Pg. Rewriting the expression in terms of
Q¢ yields the following, in which the ()¢ sum runs over all sets Q¢ C Pe which contain

(S—B)ﬂpg

DD | CERE i o | (RS Vi )

q€PyUPg t=0 pPEA—(PyUPg) P Qe qEPuUQs q€P: — Q¢
0<vp<ap 1<t,<[%]
x tr(WoTu(n) | S5:2° [ »* [ <)

PEA q€EPUQe
p¢ PyUPs
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The following values for ¢, and v, achieve the desired space Sy, (2" Mp, wB)) | Rp:

(1) vy =0by, forallpe A— (P, U P)
(2) t,=1forall ¢ € P,U(BNQsg)
(3) ty=1by/2 for all g € (£ — B)N Ps.
(Note that our second restriction on Q¢ implies that (£ — B) N P = (£ — B) N Q¢, hence

we have accounted for all ¢,.)

We keep only the term with v, and ¢, as chosen above, and separate out the primes
occurring to exponent 2 in the level. (Such primes affect the content of the S™*-space.) We
eliminate the Wp, operator using part (5) of Proposition 3.2. Following these computations,

the remaining expression is:

e-o I (NI E) I @ri-0 I ([2]+1-2) T 2 I [

qEPyUPe q€ Py PEA peE—B qe€—Pg q€BUFy
ngUPM
2
X > tr(Wo:Tor(n) | 55,2° I[ o> [ &)
£CPg with pEA q€BUPy,
((5 B)ﬁPs)CQs p¢BUPy q¢P:—Q¢

For each (¢, the space of newforms in our trace term can be decomposed into a direct
sum using equation (1) from Section 2. Summands include S™ and spaces of lower levels
being twisted by primes in various subsets of (B — (Pg — Q¢)) U Py. Since each summand
is closed under the action of Wy, by Proposition 3.5, we may break up the trace expression
across this sum. Not all of the resulting trace terms will yield a contribution for the desired
space S5, (2'Mp ) | R = S5.(2' [[,ea_P” [14e5 @) | Rs. We now determine the
contributing terms:

If P, =0 and P; — Q¢ = B, the contributing term is the S™ subspace. In this case, the

space of newforms in our trace term is Sy, (2° Hpe 4_pP™), so the only possible summand to

consider is S™. In order to achieve the twist by Rp, we must employ the character coefficients
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in the trace term: The expansion of the coefficient [ 4 Pe (1 + (_T”)) contains the summand
qu B ( . ) Applying Lemma 3.6 part (1), the term with this summand in its coefficient
will yield the space S, (2' [[,c4_pP") | Rs. Thus we obtain contributions to those spaces

S3.(2"Mp, ,(B)) | Rp for which all v, are zero.

If By # 0 or Pe — Q¢ # B, clearly there are primes in P, or B which appear in the level
with exponent 2. We must therefore turn to S™ to reduce these levels as needed. In fact, it
is easy to see that we require only the summands of S™! which involve twists by R¢, where
C =PyU (B — (P —Qg¢)). In order to achieve the twist by Rp instead of R¢, we again
appeal to the character coefficients: The expansion of the coefficient qupuupg (1 + (‘T"))
contains the summand [] € PUU(Ps—Qg) (%") We keep only the term with this summand
in its coefficient. Applying Lemma 3.6 part (3) for each ¢ € Py, and part (2) for each

q € P: — )¢, we achieve the desired twist by Rp.

We further reduce the expression by eliminating certain W-operators. In particular, the
Wo.np piece of the operator can be eliminated by Proposition 3.2 part (5). The remaining
piece Wo,n ) will be eliminated later using Proposition 3.4. We will obtain contributions

corresponding to each piece of the coefficient quan(s—B) (1 + (%"))

Following these computations as described, the terms which remain are:

> Y 2@eB) I (3 orWaene-nTum Is5@ I o I ¢1Es)

Qg CPg with g€B—(Pg—Qg) qgeEP:NB pEA—B q€B

(sz)npggQg v4=0,1 9¢Pe—Qe
where
bt [
L@Qe.B)=@-0 J[  (1+(57) II @+1-b)
PEQeN(E-B) pgrgeJPu

< I (-2 I 2 10 [%]

peE—B qe€—Pg qeBUPFPy
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Notice that for Q)¢ as restricted, we have Q¢ N (£ — B) = P: N (£ — B), so in fact the
trace term can be written without explicit dependence on Q)c. We then employ a simple
combinatorial argument to simplify the sums: For ¢ € B, the number of choices of v, for
which we get contributions to S5, (2 [[,c4 5 p [I,e59") | R will depend on the choice of
Q¢. In our sums over v,, primes in B — P¢ will occur in the level for all choices of v,. Now
consider a prime ¢ € Pg. If ¢ € Q¢, then ¢ appears in the expression for the level, so we
get contributions for both v, = 0 and 1. However, if ¢ ¢ Qg, then ¢" is absent from the

expression, so we get contributions only for v, = 0. Thus we have (2 — v,) contributions.

Applying this argument for all relevant primes reduces the expression to

> 11 Q—Vq( 1)L(PS,B)”(WPSO(£—B)T21€ ) 1552 1] »” ][ ¢ | Bs)

q€B q€PgNB pEA—B geB
vg=0,1

where L(Pg, B) is obtained by replacing Q¢ with Pg in the expression for L(Qg, B).

Finally, we must sum these expressions over all subsets P, C Y. Rearranging the resulting
sum to show the dependence on U and Py reveals a factor of 3 «y [1,ep, (2] [Leu_p, %-
A simple induction on || then shows that

S IL[G] I w=T16[5]+1)

Pu gll pEPu Eu Pu

Incorporating this result, we obtain the desired expression. This completes the proof of

Proposition 4.3. Ul

The result from Proposition 4.3 includes all terms which will yield contributions to some or
all of the spaces S5, (2" Mg, ,(p)) | R, for a fixed set B. To complete the proof of Theorem 4.1,
we must show that the expression reduces to give the structure of coefficients and subspaces
as stated. This will require first eliminating the remaining W-operators and then evaluating
the sum over P:. (Note that in the case &€ = B, there are no remaining W-operators to

address.)
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For each prime p € P: N (€ — B), we incorporate the coefficient (1 + (%’)) into the trace
expression as follows: After writing S” as the direct sum of S22*” for ay,, 8, = £1, we apply
part (3) of Proposition 3.4, followed by part (1) of Lemma 3.6. We then evaluate the sum

over P¢ in our expression by using induction on |€]| to show that

S M2y M (w+a()

PgCE q€€—Pg pePgn(é-B) pEPsN(E—B)

ap,Bp=
1
x 3 II @-w)(= )o@t | s 2 T o [ a*) | Be)
qeglqugﬁB q pEA—B geEB
Vq=U,

=> > ]I <2+ap +ﬂp(p1)>

qeB peE—B pEE—B

vg=0,1 ap,By=
x H (2+ — vy ( ql))tr(T2k(n) | Séiapﬁp)?eg_B(? H p’ H ¢"*) | Rp)

qEB peEA—B geB

The base case of the induction clearly holds. Now suppose the equation holds for any set
& containing at most ¢ primes. Then for £ with |€| = £ + 1, separate off one prime ¢’ which
we may assume lies in B (since B # (). Now write & = &' U {¢'} and split the subsets
P C € into two types: (1) Pe = Pg (including 0)), and (2) Pe = Per U {¢'} for some Pg: as
in (1). In addition, write B = B' U {¢'}, so that we may rewrite the left-hand side of the
above equation in terms of Pgr, £ and B’. This results in the following:

pre-w(@)| T M2 T (@) T T e-w()

Poi CE' qEE'—Pg1 pEPgiN(E'—B') 4 | 9€PsNE’

Vg=

x tr(Tog(n) | Sy 7" "= 2 T o [] ¢*) | o)
A-B qEB

Now we apply the inductive hypothesis to the bracket and simplify, noting that &' — B’

£ — B. Finally, summing the result over all choices for the subset B yields

SN S 0@ B u(B)tr(Ta(n) | Sy " (2 M, (5)) | R)

BCE q€B pEE-B
vg=0,1 ayp,Bp==%1
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Since this trace involves only Hecke operators, it yields the isomorphism as desired. This

concludes the proof of Theorem 4.1. O

Our second step in proving Theorem 2.1 is to use the Hecke structure from Theorem 4.1
to determine the dimension of Sk+1/2(4]\/4\, X, F'), the subspace of Sk+1/2(4]\/4\, X) generated by

the eigenforms equivalent to our newform F. These dimensions are given in the following:
Corollary 4.4. Let the notation and terminology be as in Theorem 4.1 and let F € S5, (2'M)
be a newform. Then

(1) F is an element of S5,(2'Mp, ,(p)) | Rp for some B C £ and some choice of v(B),

and

(2) The dimension of the space Sk+1/2(4j/\4\, X, F,) is given by

dim(Seo o0, £)) = =0 T [F]TI6 [3] 0 TT (3] +1-3)
<[Lw+1-8) I (@+an+6(2)) [le+e-w(Z)

Remark. As in Theorem 4.1, the expression given in (2) is considerably simpler in certain
cases. For instance, if £ = (), we do not split the space S35, (2°M) into subspaces, and for
every newform F € S9, (2°M) we simply have
dim(Ska12(40, % F ) = 2= ) [T (3[%] +1) TTap +1-5)
peU PEO

Also, for us the significant factors in the expression for dim(Sk11/2 (4]/\/1\, X, F,)) are those
which may be zero. For instance, suppose we have p € £ satisfying p = 1 (mod 4), and
F e S5 7(2'M). Then the coefficient has a factor of 1 — <’71) which is zero in this case.
Therefore dim(Sy1 /2(42\//7 X, F,)) = 0, so F has no equivalent half-integral weight Hecke

eigenforms of level 4M and character X- O
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Proof. Clearly (2) follows immediately from Theorem 4.1, once (1) is established. The proof
for the case B = () was given previously in Corollary 5.5 in [8], however, the following

argument encompasses all cases:

Let F be a newform in S9, (2!M). If £ = 0, S5,(2"M) does not split into subspaces, and

therefore (1) holds trivially. Otherwise, write

Sgk 2t @ S papﬂp pES tM @ QtMg 1/ ) | Rg
peE qeE
ap,fp==1 vq=0,1

. @ @ Spap/jp pEE- B(QtMB,U(B)) Riz2

BCE,9q€EB p€EE—B
uq:0,1 ap,Bp==%1

Each of the summands is a space which is preserved by the action of the Hecke operators
Ty (n) for all n relatively prime to 2M: This follows from part (1) of Proposition 3.4,
since Ty(n) and the twisting operators commute up to constant multiple (by part (1) of
Proposition 3.2). Now S9, (2°M) has a basis B consisting of newforms, and moreover, using
standard facts from linear algebra, each of the summands has a basis consisting of some
subset of B. Since F' is a newform, it must therefore be a constant multiple of some element

of B (by multiplicity-one). Hence F' must be an element of one of the summands. O

The final step in proving Theorem 2.1 is to show that the dimension of Sk+1/2(4]/\/[\, X, F)
in fact gives us the dimension of Sii1/2(4N, x, F) for any odd N and any even quadratic
x modulo 4N. We proved this result for all newforms in S5 (2°M) in Corollary 5.7 of [§],

which we state here for completeness:

Proposition 4.6. ([8]) Let F € S, (2!M) be a newform, with t and M as above. For
k > 2 (resp. k =1),if F does not appear in the decomposition of Sk+1/2(4j/[\, X) (resp.
‘/3/2(4J/\4\, X)) for any positive integer M= Hp‘Mpap with odd integers oy, > 3, and for any

even quadratic Dirichlet character modulo AM , then F' does not appear in the decomposition
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of Sk+1/2(4N, X') (resp. Va2(4N, X)) for any odd positive integer N and any even quadratic

Dirichlet character x' modulo 4N .

Finally, combining this result with Corollary 4.4, one can determine whether a newform
F € S5,(2'M) has equivalent half-integral weight cusp forms in a given space Si1/2(4N, X).

One need only check whether the coefficient corresponding to F' in Corollary 4.4 is nonzero.

5. EXAMPLES

Theorem 2.1 indicates precisely which subspaces of newforms will be “missing” from the
decompositions of S;1/2(4N, x) for all N and x as above. Consequently, any nonzero forms
in these spaces will not be in the image of the Shimura lift from any such space Sy1/2(4N, X).

9y

We give examples of these “missing newforms,” computed using Cremona’s tables [5], [6] for

rational newforms of weight 2. These tables list the following identifying information:

(1) The Hecke eigenvalues A, of F' for T5(p) where p does not divide the level of F', and
p < 100.

(2) The eigenvalues, either +1 or —1, of F' for W, where ¢ divides the level of F' and
q < 100.

In [8], we used these tables to show that dim(S;*~7(338)) > 2 and dim(S,°(722)) > 1.
This illustrates nonzero newforms satisfying the set of conditions given in part (1) of Theorem
2.1. Here we will give similar examples for forms satisfying the remaining possibilities. First,

we describe the process of utilizing Cremona’s tables:

Suppose F(z) = Y >°, a(n)e*™™* is a normalized newform of weight 2 and level M. For
a prime p | M, we then have F | R, = Y > b(n)e’™™ where b(n) = (%)a(n). If p | n,

b(n) = 0. Otherwise, corresponding a(n) and b(n) may differ only in sign, and will differ

precisely when n is a quadratic non-residue modulo p. Since a(n) = A,, the eigenvalue of F’
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for the Hecke operator Ty(n), we have a relationship between the Hecke eigenvalues of F' and
those of F' | R,. We can therefore use the eigenvalue information in the tables to determine
whether F' € S}(M) or F = G | Rp for some newform G at a lower level. We can then
determine the piece of the corresponding S™-space to which F' or G belongs with respect to

a given prime. (that is, whether F' € SJ"" (M), and so forth).
Example 5.1 Using this method, we have
dim (S5~ (150) | R3) > 2

We have S5~ (150) | R C S9(450), and Cremona lists 7 distinct rational newforms of level
450, called 450A through 450G. Examining the Hecke eigenvalues of these forms and of the
rational newforms at level 150, we find that 4508, D, E, and F are elements of S7(450) while
450A, C, and G are twists by Rz of 1508, A, and C respectively. Moreover, we determine that
150A | Rs = 150B and 150B | R5 = 1504, hence 150A and B are both in S¥(150). Finally,
checking the sign of the Wj-eigenvalues shows that 1504 and B are in S5~ ~(150), therefore
450A and C are in S5 (150) | R3. Thus dim(S5~~(150) | R3) > 2, giving an example of

newforms satisfying the final set of conditions given in Theorem 2.1. a

Example 5.2 Similar calculations show that
dim(S2=(490) | Rs) > 4
which also illustrates the third case of the theorem. a
Example 5.3 Finally, we compute that 194 | R3 = 171B, which shows that
dim(S5(19) | R3) > 1

This illustrates at least one newform satisfying the second set of conditions of Theorem 2.1.

O
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Corresponding to each part of Theorem 2.1, we have found additional examples of nonzero
newforms satisfying the stated conditions. The ease with which these examples are computed
suggests that there may in fact be many nonzero newforms which are not in the image of

the Shimura lift from any Sj11/2(4N, x) with N and x as above.

We also remark that while Cremona’s tables deal exclusively with rational newforms, tables
of Stein [27] extend this data to include eigenvalue information for all newforms of weight
2. Using these tables, any of our examples could be revisited to find the exact dimension of

the subspace involved.

6. CONCLUSION

In this paper, we have used the explicit Hecke structure of spaces Sy11/2(4NN, x) to provide
easily-verified conditions under which a given newform will have equivalent forms in these
spaces. We thereby illustrated the image of the Shimura lift from such spaces, and we
provided examples which show that this lift need not be surjective. It would be interesting
to know whether there are always missing subspaces of positive dimension. We are currently
developing algorithms to compute the dimensions of the missing subspaces for any specified
level. (These algorithms use MAGMA and are based on trace formulas of Ross [21], Yamauchi
[33], and Saito-Yamauchi [22].)

It is possible to prove Hecke structure results for Sy11/2(V, x) for almost all levels N (with
x even and quadratic), using methods similar to those used in proving Theorem 4.1. This is
due to the fact that trace identities handling most remaining cases of N are given by Ueda
in [29]. We are currently adapting our techniques to handle these additional cases, with the
goal of extending Theorem 2.1. The case of Sy1/2(64M, x) is of particular interest, as these
decompositions also yield newforms which satisfy Waldspurger’s (H2) condition. Proving an

analog of Theorem 2.1 in this case will allow us to firmly establish the important connection



24 SHARON M. FRECHETTE
between Hecke structure theory and the nonvanishing of central values of quadratic twists

of L-functions, as described in the introduction.
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