
GAUSSIAN HYPERGEOMETRIC FUNCTIONS ANDTRACES OF HECKE OPERATORSSHARON FRECHETTE, KEN ONO, AND MATTHEW PAPANIKOLASAbstrat. We establish a simple indutive formula for the trae Trnewk (�0(8); p) of the p-thHeke operator on the spae Snewk (�0(8)) of newforms of level 8 and weight k in terms ofthe values of 3F2-hypergeometri funtions over the �nite �eld Fp . Using this formula whenk = 6, we prove a onjeture of Koike relating Trnew6 (�0(8); p) to the values 6F5(1)p and4F3(1)p. Furthermore, we �nd new ongruenes between Trnewk (�0(8); p) and generalizedAp�ery numbers.1. Introdution and statement of resultsLet p be an odd prime, and let Fp denote the �nite �eld with p elements. For anymultipliative harater � on F�p , extend � to a harater on Fp by de�ning �(0) := 0. Fortwo haraters A and B on Fp , we de�ne the normalized Jaobi sum ( AB ) by(1.1) �AB� := B(�1)p J(A;B) = B(�1)p Xx2Fp A(x)B(1� x);where B is the omplex onjugate of the harater B.Let n be a positive integer. For haraters A0; A1; : : : ; An and B1; B2; : : : ; Bn on Fp , Greene[8℄ de�ned the Gaussian hypergeometri series over Fp by(1.2) n+1Fn� A0; A1; : : : ; AnB1; : : : ; Bn x�p := pp� 1X� �A0�� ��A1�B1�� � � ��An�Bn���(x);where the sum is taken over all haraters � on Fp . Let " denote the trivial harater, and let� denote the quadrati harater modulo p (the prime p will always be lear from ontext).Speializing to our purposes, de�ne(1.3) n+1Fn(x) := n+1Fn� �; �; : : : ; �"; : : : ; " x�p = pp� 1X� ���� �n+1 �(x):To emphasize the dependene on p, we will oasionally write n+1Fn(x)p := n+1Fn(x).One important role of Gaussian hypergeometri funtions is that they provide formulasfor the Fourier oeÆients of ertain modular forms. For example, if � 2 Q n f0; 1g and p isDate: Marh 3, 2004.1991 Mathematis Subjet Classi�ation. Primary 11F11; Seondary 11F72, 11T24, 33C99.The �rst author thanks the Department of Mathematis at Brown University for its hospitality duringher visit for the 2002-2003 aademi year. The seond author is grateful for the support of a grant from theNational Siene Foundation, and the generous support of the Alfred P. Sloan, David and Luile Pakard,H. I. Romnes, and John S. Guggenheim Fellowships. The third author thanks the support of grants fromthe NSA MDA904-03-1-0019 and NSF DMS-0340812.1



2 SHARON FRECHETTE, KEN ONO, AND MATTHEW PAPANIKOLASa prime of good redution for the Legendre normal form ellipti urveE(�) : y2 = x(x� 1)(x� �);then ��(�1)p 2F1(�)p is the p-th Fourier oeÆient of the weight 2 newform assoiated toE(�) by the Shimura-Taniyama orrespondene [11℄, [16℄. Similarly, if� 2 ��1; 4; 14 ;�8;�18 ; 64; 164	 ;then, for all but �nitely many primes p, it turns out that 3F2(�)p is essentially the p-th FourieroeÆient of an expliit weight 3 newform with omplex multipliation that is assoiated toa ertain singular K3 surfae X� (see Corollary 11.20 of [17℄).In view of these examples, it is natural to seek further formulas for oeÆients of modularforms in terms of Gaussian hypergeometri funtions. Here we address the problem ofobtaining a \Gaussian hypergeometri trae formula" for the ation of Heke operators. Forpositive integers N and k, let Sk(�0(N)) denote the spae of usp forms of weight k on theongruene subgroup �0(N). Let Snewk (�0(N)) denote the subspae generated by its levelN newforms. Furthermore, let Trk(�0(N); p) denote the trae of the Heke operator Tp onSk(�0(N)), and similarly let Trnewk (�0(N); p) denote the trae of Tp on Snewk (�0(N)).The Eihler-Selberg trae formula [9℄ gives a preise desription of Trk(�0(N); p); how-ever, the formula is quite ompliated (for example, see Theorem 2.2). Here we give a simpleformula, indutive in k, for Trnewk (�0(8); p) in terms of the values 3F2(�). Moreover, Theo-rem 1.1 below provides a omplete desription of the traes of Heke operators Tp for uspforms on �0(8).To state this result, we �rst �x notation. Let k � 2 be even. If p � 1 (mod 4), then wean uniquely write p = a2+b2, where a and b are positive integers, and where a is odd. Thenwe de�ne(1.4) "k(p) := ( 12(4a2 � p) k2�1 + 12(4b2 � p) k2�1 if p � 1 (mod 4),�(�p) k2�1 if p � 3 (mod 4).Remark. Using Theorem 4.3 (2), it is straightforward to verify that(1.5) "k(p) = �(�1) k2 h12(p+ p2 3F2(1)) k2�1 + 12(p� p2 3F2(1)) k2�1i :Also, for odd primes p and k � 4, de�ne the funtion Hk(p) by(1.6) Hk(p) := pk�2 p�1X�=2 �(��)�(1� �) k2�1 3F2(�) k2�1;and set H2(p) := ��(�1). Let [ nj ℄ denote the trinomial oeÆient de�ned by the expansion(1.7) (1 + x+ x�1)n = nXj=�n � nj �xj:Theorem 1.1. If p is an odd prime and k � 2 is even, thenTrnewk (�0(8); p) = �Hk(p)� "k(p)� k2�1Xj=1 �� k2 � 1k2 � j � 1 �� � k2 � 1k2 � j �� pj Trnewk�2j(�0(8); p):



HYPERGEOMETRIC FUNCTIONS AND HECKE OPERATORS 3Remark. As pointed out by the referee, we an repakage Theorem 1.1 in terms of generatingfuntions. Moreover, if we let j(d) denote the oeÆient of xj in (1� x)(1 + x+ x2)d, thenTheorem 1.1 beomes the more ompat(1.8) "k(p) +Hk(p) + k2�1Xj=0 pjj(k2 � 1)Trnewk�2j(�0(8); p) = 0:It is also interesting to onsider the generating funtion Pk Trnewk (�0(8); p)x k2�1. We anmultiply (1.8) by x k2�1 and sum over k; after reindexing the sum of traes we obtainXk�2 even("k(p) +Hk(p))x k2�1 + Xk�2 even 1Xj=0 pjj(k2 + j � 1)Trnewk (�0(8); p)x k2+j�1 = 0:The �rst sum is a geometri series. Using properties of the numbers j(d) (see [13, p. 316℄),we then �nd thatEk(x) + p�1X�=2 �(��)1� �(1� �)p23F2(�)x + A(px) Xk�2 evenTrnewk (�0(8); p)(xB(px)) k2�1 = 0;where A(x) = 1 + x�p1� 2x� 3x22x(1 + x) ; B(x) = 1� x�p1� 2x� 3x22x2 ;and Ek(x) = ( 1=21�(4a2�p)x + 1=21�(4b2�p)x if p � 1 (mod 4),� 11+px if p � 3 (mod 4).By setting R(x) := x1 + px + p2x2 ;we then observe(1.9) Xk�2 evenTrnewk (�0(8); p)x k2�1 =� 1 + px1 + px + p2x2 "Ek(R(x)) + p�1X�=2 �(��)1� �(1� �)p2 3F2(�)R(x)# :Thus Pk Trnewk (�0(8); p)x k2�1 is a rational funtion. By omputing the values of 3F2(�)expliity, we an ompute this rational funtion for spei� values of p. For example, we �nd(1.10) Xk�2 evenTrnewk (�0(8); 3)x k2�1 = � 4x1 + 5x+ 15x2 + 27x3 :For larger primes the rational funtions beome more and more ompliated.Remark. It is reasonable to expet that there are generalizations of Theorem 1.1 for other�0(N), whih will be the subjet of further study. However, there does not appear to be asimple way of obtaining a general result in whih the hoie of parameters in the relevantGaussian hypergeometri funtions are given a priori as a funtion of N . With the properhypergeometri funtions in hand, it seems likely that proofs of suh generalizations wouldfollow from arguments similar to the ones presented here.



4 SHARON FRECHETTE, KEN ONO, AND MATTHEW PAPANIKOLASTheorem 1.1 has some immediate onsequenes. Here we desribe several appliations. Asusual, let �(z) denote Dedekind's eta-funtion(1.11) �(z) := q1=24 1Yn=1(1� qn);where q := e2�iz. Let �(2z)4�(4z)4 =P1n=1 a(n)qn be the unique newform in Snew4 (�0(8)). Ifp is an odd prime, then Theorem 1.1 implies thatTrnew4 (�0(8); p) = a(p) = �H4(p)� "4(p) = �p� p2 p�1X�=2 �(��)�(1� �) 3F2(�):By Theorem 3.13 of [8℄ (see also Proposition 4.1 (2)), we have p2Pp�1�=2 �(��)�(1��)3F2(�) =p3 4F3(1), and so(1.12) Trnew4 (�0(8); p) = a(p) = �p3 4F3(1)� p:This formula is the onlusion of Theorem 6 of [3℄, and is equivalent to the assertion thatthe Calabi-Yau threefold given byx+ 1x + y + 1y + z + 1z + w + 1w = 0is modular.As another appliation, we reall the following onjeture of Koike [12℄.Conjeture (Koike). Let �(z)8�(4z)4 + 8�(4z)12 = P1n=1 b(n)qn be the unique newform inSnew6 (�0(8)). If p is an odd prime, thenb(p) = �p5 6F5(1) + p4 4F3(1) + (1� �(�1))p2:By ombining Theorem 1.1 with transformation laws for Gaussian hypergeometri funtions,we obtain the following.Corollary 1.2. Koike's Conjeture is true.In addition to their relationship with oeÆients of modular forms, Gaussian hypergeomet-ri funtions have also played important roles in the proofs of \superongruene" onjeturesof Beukers [5℄, [6℄ and Rodriguez-Villegas [19℄ (see [3℄, [14℄, [15℄). For primes p � 5, the fol-lowing ongruene due to Mortenson [15℄ is typialp�1Xn=0 (6n)!(n!)(2n)!(3n)! � 2�4n3�3n � �(�1) (mod p2):Other works by Ahlgren [1℄, Koike [11℄, and the seond author [16℄ provide further examplesof p-adi results for ombinatorial expressions whose proofs require these funtions.As an additional appliation, we onsider ongruenes of the type originally onsidered byBeukers [5℄, [6℄. If n is a positive integer, then de�ne the Ap�ery number A(n) by(1.13) A(n) := nXj=0 �n+ jj �2 �nj�2 :These numbers played an important role in Ap�ery's elebrated proof of the irrationality of�(3). In 1987, Beukers related these numbers to modular forms [6℄; he proved that if p is an



HYPERGEOMETRIC FUNCTIONS AND HECKE OPERATORS 5odd prime, then(1.14) Trnew4 (�0(8); p) � A�p� 12 � (mod p):He went on to onjeture thatTrnew4 (�0(8); p) � A�p� 12 � (mod p2):Using (1.12), the Gross-Koblitz formula for the p-adi Gamma-funtion, some p-adi analysis,and the WZ method, Ahlgren and the seond author [3℄ suessfully proved this onjeture.Using Theorem 1.1, it is now possible to obtain generalizations of suh ongruenes. Forbrevity, we shall be ontent with ongruenes modulo primes p. To state these results, forintegers m, `, �, and n, de�ne the generalized Ap�ery number A(m; `; �;n) by(1.15) A(m; `; �;n) := nXj=0 �n+ jj �m�nj�` �j:Of ourse, we have that A(n) = A(2; 2; 1;n).Theorem 1.3. Suppose that k � 4 is even, and that p is an odd prime.(1) If k2 � 2 (mod p� 1), thenTrnewk (�0(8); p) � A�p� 12 � (mod p):(2) If k2 � 3 (mod p� 1), thenTrnewk (�0(8); p) � A�2; 4; 1; p� 12 � (mod p):In general, we have the following.Theorem 1.4. If k � 4 is even and p is an odd prime, thenTrnewk (�0(8); p) � �(1 + (�1) k2�1)2 �A�1; 2; 1; p� 12 � k2�1� p�1X�=2 �(��)�(1� �) k2�1A�1; 2; �; p� 12 � k2�1 (mod p):Remark. Mortenson has kindly pointed out that, as an immediate orollary to Theorem 1.3,one has the following. As in the statement of Koike's onjeture, we let P b(n)qn be theFourier expansion of the unique newform in S6(�0(8)). Then for all odd primes p,b(p) � p�1Xn=0 (12)6n(n!)6 (mod p);where as usual, (a)n := a(a + 1) � � � (a + n � 1) for n > 0 and (a)0 = 1. In fat, Mortensonpoints out that this ongruene appears to hold modulo p5.



6 SHARON FRECHETTE, KEN ONO, AND MATTHEW PAPANIKOLASIn Setion 2 we reall a formulation of the Eihler-Selberg trae formula for the groups�0(4) and �0(8), and we state a formula, whih will be proved in Setion 7, for the group�0(2) (see Theorem 2.3). In Setion 3 we then interpret these trae formulas in terms ofthe numbers of Fp -points on ertain lasses of varieties, and in Setion 4 we reall essentialfats regarding Gaussian hypergeometri funtions. Assuming the truth of Theorem 2.3, inSetion 5 we ombine all of these results to prove Theorem 1.1 and Corollary 1.2. In Setion6 we prove Theorems 1.3 and 1.4. In Setion 7, we onlude with a proof of Theorem 2.3.2. Trae formulasFix a prime p � 3, and let k � 2 be even. Using the version of the Eihler-Selbergtrae formula due to Hijikata [9, Thm. 2.2℄, we will prove formulas for Trk(�0(N); p) whenN = 2, 4, and 8. In the end, we onsider simpli�ations of Hijikata's formula that relateTrk(�0(N); p) to the number of points on ertain varieties over Fp .We begin by �xing notation. We will make speial use of two families of ellipti urves:2E1(�) : y2 = x(x� 1)(x� �);(2.1) 3E2(�) : y2 = (x� 1)(x2 + �):(2.2)For a prime p � 3 and � 2 Fp , the traes of Frobenius 2A1(p; �) and 3A2(p; �) are2A1(p; �) = p+ 1� j2E1(�)(Fp)j; � 6= 0; 1;(2.3) 3A2(p; �) = p+ 1� j3E2(�)(Fp)j; � 6= 0;�1:(2.4)We will rewrite the relevant trae formulas using these quantities.Let(2.5) Fk(x; y) := xk�1 � yk�1x� y :The relations x + y = s and xy = p uniquely de�ne a polynomial Gk(s; p) = Fk(x; y).Moreover, a straightforward indution gives(2.6) Gk(s; p) = k2�1Xj=0(�1)j �k � 2� jj � pjsk�2j�2:The polynomial Gk(s; p), evaluated at ertain values of s, is a key part of Hijikata's formulafor Trk(�0(N); p) (e.g. see Theorem 2.2). An important observation is that among the variouspiees of Hijikata's formula, for �xed level N , the only part that varies with k is Gk(s; p).Moreover, even the points s at whih we evaluate Gk(s; p) depend only on N and not on k.The following proposition appears in [2, Thms. 1{2℄, in the ase of level 4, weight 6, andin [4, Thms. 1{2℄, in the ase of level 8, weight 4. In fat, the formulas below hold for alleven k � 4 with exatly the same proofs.Proposition 2.1 ((1) Ahlgren [2℄; (2) Ahlgren-Ono [4℄). If p is an odd prime, and k � 4 iseven, then the following are true.(1) Trk(�0(4); p) = �3� p�1X�=2Gk(2A1(p; �); p).(2) Trk(�0(8); p) = �4� p�2X�=2Gk(2A1(p; �2); p).



HYPERGEOMETRIC FUNCTIONS AND HECKE OPERATORS 7We set more notation. For d < 0 and d � 0, 1 (mod 4), let O(d) be the order ofdisriminant d in the imaginary quadrati �eld Q(pd). Let h(O(d)) = h(d) be the lassnumber of O(d), and !(O(d)) = !(d) = 12 jO(d)�j. Finally, let h�(d) = h(d)=!(d). Also,reall the de�nition of the Kroneker symbol for d,(2.7) �d2� := 8><>:0 if d � 0 (mod 4),1 if d � 1 (mod 8),�1 if d � 5 (mod 8).Theorem 2.2 below is Hijikata's version of the Eihler-Selberg trae formula at level 2, whosederivation from the general formula is a straightforward alulation whih we omit.Theorem 2.2 (Hijikata [9, Thm. 2.2℄). Let p be an odd prime, and let k � 2 be even.Trk(�0(2); p) = �2� �(p)(�p) k2�1 � X0<s<2pps even Gk(s; p)Xf jt h��s2 � 4pf 2 � (s; f);where �(p) = 8><>:12h�(�4p) if p � 1 (mod 4),3h�(�p) if p � 3 (mod 8),2h�(�p) if p � 7 (mod 8),and where if s2 � 4p = t2D, with D the disriminant of Q(pD), and if f j t,(s; f) = (1 + �D2 � if ord2(f) = ord2(t),2 if ord2(f) < ord2(t).As before, whenever p � 1 (mod 4), we let a, b � 0, a odd, be de�ned by the expressionp = a2 + b2. We then de�ne(2.8) Æk(p) := ( 12Gk(2a; p) + 12Gk(2b; p) if p � 1 (mod 4),(�p) k2�1 if p � 3 (mod 4).The following theorem provides the level 2 version of Proposition 2.1.Theorem 2.3. For a prime p � 3 and k � 4 even,Trk(�0(2); p) = �2� Æk(p)� p�2X�=1Gk(3A2(p; �); p):We postpone the proof of Theorem 2.3, whih is self-ontained, until Setion 7.



8 SHARON FRECHETTE, KEN ONO, AND MATTHEW PAPANIKOLAS3. Counting points on varieties over FpFor k � 4 even, de�ne three sequenes of varieties Uk, Vk, andWk, whih are hypersurfaesin aÆne k-spae, by Uk : y2 = k�2Yi=1(xi � 1)(x2i + �);(3.1) Vk : y2 = k�2Yi=1 xi(xi � 1)(xi � �);(3.2) Wk : y2 = k�2Yi=1 xi(xi � 1)(xi � �2):(3.3)One sees readily that Uk, Vk, andWk are onstruted from families of ellipti urves with sub-groups of the form Z=2Z, Z=2Z�Z=2Z, and Z=4Z�Z=2Z respetively. Geometrially, thesevarieties are essentially of Kuga-Sato type: for example, there is an easily de�ned surjetivemap onto Vk from the (k� 2)-th power of the Legendre family, �bered over the �-line. Thusas in Birh [7℄ and Ihara [10℄, for a prime p � 3 it is reasonable to expet that the numbers ofpoints in Uk(Fp), Vk(Fp), and Wk(Fp) are diretly related to Trk(�0(2); p), Trk(�0(4); p), andTrk(�0(8); p) respetively. We make these assertions exat in Propositions 3.1, 3.2, and 3.3.We now onsider formulas for jUk(Fp)j, jVk(Fp)j, and jWk(Fp)j for primes p � 3. An exatformula for jW4(Fp)j was established by Ahlgren and the seond author [4, Thm. 1℄, andone for jV6(Fp)j was determined by Ahlgren [2, Thm. 1℄. Propositions 3.1{3.3 extend theseresults to eah of Uk(Fp), Vk(Fp), Wk(Fp) for arbitrary even k � 4.Let C(n) = 1n+1 ( 2nn ) be the nth Catalan number, and let Æk(p) be as in (2.8).Proposition 3.1. For a prime p � 3 and k � 4 even,jUk(Fp)j = pk�1 + 2 + C �k2 � 1� p k2�1(p+ 1)� k2�1Xj=0 ��k � 2j �� �k � 2j � 1�� pj(Trk�2j(�0(2); p) + Æk�2j(p) + 2):Remark. It is worth pointing out that the oeÆients � k�2j �� � k�2j�1 � are preisely the onesneeded to express xk�2 in terms of Chebyshev polynomials of the seond kind.Proof. First of all, we havejUk(Fp)j = X�;x1;:::;xk�22Fp (1 + � k�2Yi=1(xi � 1)(x2i + �)!)= pk�1 + p�1X�=0 (p�1Xx=0 ��(x� 1)(x2 + �)�)k�2
= pk�1 + 2 + p�2X�=1 3A2(p; �)k�2:(3.4)

We will rewrite this expression in terms of the polynomials Gk�2j(3A2(p; �); p) for 0 � j �k2�1 using a ombinatorial argument involving inverse relations (see Riordan [18, Chs. 2{3℄).



HYPERGEOMETRIC FUNCTIONS AND HECKE OPERATORS 9One suh inverse pair [18, Table 2.3℄ is the following:(3.5) an = bn2 Xj=0 ��nj�� � nj � 1�� bn�2j and bn = bn2 Xj=0(�1)j �n� jj � an�2j:We may rearrange (2.6) to giveGk(s; p)p k2�1 = k2�1Xj=0(�1)j �k � 2� jj �� spp�k�2�2j :Setting n = k � 2, and using an = � spp�n and bn = Gn+2(s;p)pn2 in (3.5), we obtainsk�2 = k2�1Xj=0 ��k � 2j �� �k � 2j � 1�� pjGk�2j(s; p):Substituting s = 3A2(p; �), the formula in (3.4) therefore beomesjUk(Fp)j = pk�1 + 2 + k2�1Xj=0 ��k � 2j �� �k � 2j � 1�� pj p�2X�=1Gk�2j(3A2(p; �); p)= pk�1 + 2 + ��k � 2k2 � 1�� �k � 2k2 � 2�� p k2�1(p� 2)� k2�2Xj=0 ��k � 2j �� �k � 2j � 1�� pj�Trk�2j(�0(2); p) + Æk�2j(p) + 2�;where for the seond equality we apply Theorem 2.3, when j � k2 � 2, and use that G2 = 1,when j = k2 � 1. Using standard fats about binomial oeÆients, we see that�k � 2k2 � 1�� �k � 2k2 � 2� = C �k2 � 1� :Finally, we adjust the sum to inorporate a j = k2 � 1 term, whih equals �3C �k2 � 1� p k2�1,sine Tr2(�0(2); p) = 0 and Æ2(p) = 1, and obtain the desired equality. �The derivations of the formulas for jVk(Fp)j and jWk(Fp)j in the following propositions areessentially the same as the proof of Proposition 3.1. The primary di�erenes are that forjVk(Fp)j we use Proposition 2.1 (1) instead of Theorem 2.3, and that for jWk(Fp)j we useProposition 2.1 (2). We omit the remaining details.Proposition 3.2. For a prime p � 3 and k � 4 even,jVk(Fp)j = pk�1 + 2 + C �k2 � 1� p k2�1(p+ 1)� k2�1Xj=0 ��k � 2j �� �k � 2j � 1�� pj (Trk�2j(�0(4); p) + 3) :



10 SHARON FRECHETTE, KEN ONO, AND MATTHEW PAPANIKOLASProposition 3.3. For a prime p � 3 and k � 4 even,jWk(Fp)j = pk�1 + 3 + C �k2 � 1� p k2�1(p+ 1)� k2�1Xj=0 ��k � 2j �� �k � 2j � 1�� pj (Trk�2j(�0(8); p) + 4) :Combining the numbers of Fp-points on the varieties Uk, Vk, and Wk yields an amusingand useful relationship among the traes Trnewk (�0(8); p). Spei�ally, we put(3.6) Nk(p) = �jUk(Fp)j+ 2jVk(Fp)j � jWk(Fp)j;and obtain the following theorem as an immediate onsequene of Propositions 3.1{3.3.Theorem 3.4. For a prime p � 3 and k � 4 even,Nk(p) = �1 + k2�1Xj=0 ��k � 2j �� �k � 2j � 1�� pj �Trnewk�2j(�0(8); p) + Æk�2j(p)� :4. Gaussian hypergeometri funtionsGaussian hypergeometri funtions over �nite �elds were de�ned by Greene [8℄ as haratersum analogues of the lassial hypergeometri funtions. The lassial funtions satisfy manyinteresting properties, suh as transformation and summation formulas, and Greene showedthat their �nite �eld analogues enjoyed many similar properties. Koike [11℄ and the seondauthor [16℄ further explored the arithmeti properties of Gaussian hypergeometri funtions,inluding the number-theoreti signi�ane of ertain speial values of these funtions. Weontinue this study below in Setion 5, proving Theorem 1.1 and Koike's onjeture.In this setion, we give several properties of Gaussian hypergeometri funtions whihwe shall require. Using properties of haraters and of Jaobi sums, Greene proved analternate formula for the 2F1 funtion. Also, Greene [8, Thm. 3.13℄ showed that a Gaussianhypergeometri funtion an be expressed as a sum of Gaussian hypergeometri funtionsof lower degree. Speializing these results to the ase of n+1Fn(�) as de�ned above, we havethe following proposition.Proposition 4.1 (Greene [8℄). If n � 1 and � 2 Fp, then the following hold.(1) 2F1(�) = "(�)�(�1)p Xx2Fp �(x)�(1� x)�(1� x�):(2) n+1Fn(�) = �(�1)p Xx2Fp �(x)�(1� x) nFn�1(x�):One of the transformation formulas proved by Greene [8, Thm. 4.2℄ involves the relation-ship between a Gaussian hypergeometri series evaluated at � and at 1=�. We will have needof two speial ases of this theorem, as given in the following proposition.Proposition 4.2 (Greene [8℄). If � 2 Fp is nonzero, then(1) 2F1(�) = �(�) 2F1( 1�).(2) 3F2(�) = �(��) 3F2( 1�).



HYPERGEOMETRIC FUNCTIONS AND HECKE OPERATORS 11We will also have need of the speial values 2F1(�1) and 3F2(1). Both parts of the followingtheorem appear in [16℄; part (1) is a speial ase of Theorem 2, and it is noted that part (2)is a speial ase of a theorem of Evans.Theorem 4.3 (Ono [16℄). Let p be an odd prime, and if p � 1 (mod 4), then write p = a2+b2where a and b are positive integers, and where a is odd. The following hold.(1) 2F1(�1) = 8<:0 if p � 3 (mod 4);2a(�1)a+b+12p if p � 1 (mod 4):(2) 3F2(1) = 8<:0 if p � 3 (mod 4);4a2 � 2pp2 if p � 1 (mod 4):The following theorem relates the values of 2F1(�) and 3F2(�) to the ellipti urves 2E1(�)and 3E2(�) as de�ned in Setion 2. We note that part (2) is given in [3℄, as a slight refor-mulation of [16, Thm. 5℄.Theorem 4.4 ((1) Koike [11℄; (2) Ono [16℄). Let p be an odd prime, and let 2A1(p; �) and3A2(p; �) be as given in (2.3) and (2.4) respetively. Then the following are true.(1) 2F1(�) = ��(�1) 2A1(p; �)p if � 6= 0; 1:(2) 3F2�1 + 1�� = �(��) (3A2(p; �)2 � p)p2 if � 6= 0;�1:As a onsequene, with ertain restritions on �, the values 2F1(�) and 3F2(�) are expliitlyrelated to eah other.Corollary 4.5. If p is an odd prime, then the following hold.(1) p2 2F1(�)2 = p2 3F2� �4�(�� 1)2� + p if � 6= 0; 1;�1:(2) p2 2F1(�1)2 = p2 3F2(1) + (1 + �(�1))p:Proof. By Theorem 4.4 (1), if � 6= 0, 1, then p2 2F1(�)2 = 2A1(p; �)2. If � 6= �1, then by thehange of oordinates x = �x0 � � and y = � 32y0, 2E1(�) is isomorphi to the �-quadratitwist of 3E2(t), where � = ��+12 and t = � (��1)2(�+1)2 . (See also Lemma 7.1.) It follows thatj2E1(�)(Fp)j = p+ 1� �(�) 3A2(p; t);hene 2A1(p; �)2 = 3A2(p; t)2 when � 6= 0; 1;�1. Now applying Theorem 4.4 (2) givesp2 2F1(�)2 = p2 3F2� �4�(��1)2 �+ p, if � 6= 0; 1;�1, sine �(�t) = 1 and 1 + 1t = �4�(��1)2 .In the ase � = �1, if p � 1 (mod 4) we write p = a2 + b2 with a odd. By Theorem 4.3(1), we have p2 2F1(�1)2 = (0 if p � 3 (mod 4);4a2 if p � 1 (mod 4):De�ne g(�) := p2 3F2� �4�(��1)2 �+ p. By Theorem 4.3 (2), we haveg(�1) = (p if p � 3 (mod 4);4a2 � p if p � 1 (mod 4);and thus p2 2F1(�1)2 = g(�1) + �(�1)p = p2 3F2(1) + (1 + �(�1))p. �



12 SHARON FRECHETTE, KEN ONO, AND MATTHEW PAPANIKOLAS5. Proofs of Theorem 1.1 and Corollary 1.2Here we give the proofs of Theorem 1.1 and Corollary 1.2, the latter of whih establishesthe truth of Koike's onjeture. We require the formula for jUk(Fp)j given in (3.4), and theanalogous fats about jVk(Fp)j; and jWk(Fp)j as given below. Their derivations are similarto that of (3.4). jVk(Fp)j = pk�1 + 2 + p�1X�=2 2A1(p; �)k�2;(5.1) jWk(Fp)j = pk�1 + 3 + p�1X�=2 2A1(p; �2)k�2= pk�1 + 3 + p�1X�=2(1 + �(�)) 2A1(p; �)k�2:(5.2)
Proof of Theorem 1.1. We �rst note that the ase k = 2 is trivial, sine Trnew2 (�0(8); p) = 0and H2(p) = �"2(p). Now �x k � 4. We require the following expression for Nk(p) in termsof the funtions Hk(p), as de�ned in (3.6) and (1.6) respetively.Proposition 5.1. Let p be an odd prime, and let k � 4 be even. Then(5.3) Nk(p) + 1 = � k2�1Xj=0 �k2 � 1j � pjHk�2j(p):Proof. By ombining (3.4) (with � 7�! 1��1), (5.1), and (5.2), and then applying Theorem 4.4,we see thatNk(p) + 1 = � p�1X�=2 3A2 �p; 1�� 1�k�2 + p�1X�=2(1� �(�)) 2A1(p; �)k�2= � p�1X�=2 �p2�(1� �) 3F2(�) + p� k2�1 + p�1X�=2(1� �(�)) �p2 2F1(�)2�k2�1 :Using Corollary 4.5 on the seond sum, we express Nk(p) + 1 ompletely in terms of 3F2-funtions. Then sine (1� �(�1))�p2 3F2(1) + (1 + �(�1))p� k2�1 = 0, we haveNk(p) + 1 = � p�1X�=2 �p2�(1� �) 3F2(�) + p� k2�1+ p�2X�=2(1� �(�))�p2 3F2� �4�(�� 1)2� + p� k2�1 :



HYPERGEOMETRIC FUNCTIONS AND HECKE OPERATORS 13To simplify, note that �4�(��1)2 = � if and only if � = ��2�2p1��� . Thus in the seond sum, aterm ontaining 3F2(�) appears with multipliity 1 + �(1� �). Therefore,Nk(p) + 1 = � p�1X�=2 �p2�(1� �) 3F2(�) + p� k2�1+ p�1X�=2(1� �(��))(1 + �(1� �))�p2 3F2(�) + p� k2�1:Expanding the �k2 � 1�-th powers using the binomial formula, we then see that (5.3) holdsby applying the following lemma. �Lemma 5.2. If p is an odd prime, then for any integer n � 0 the following are true.(1) p�1X�=2(1� �(��)) 3F2(�)2n+1 = 0:(2) p�1X�=2 �(1� �)(1� �(��)) 3F2(�)2n = 0:Proof. We prove only part (1). (The proof of part (2) is analogous.) We havep�1X�=2(1� �(��)) 3F2(�)2n+1 = p�1X�=2 3F2(�)2n+1 � p�1X�=2 �(��) 3F2 � 1��2n+1 ;by splitting the sum and taking � 7�! 1� in the seond piee. Then using Proposition 4.2 (2)on the seond piee, we obtainp�1X�=2(1� �(��)) 3F2(�)2n+1 = p�1X�=2 3F2(�)2n+1 � p�1X�=2 �(��)2n+2 3F2(�)2n+1 = 0: �Next we invert the equation from Proposition 5.1, obtaining an expression for Hk(p) interms of Nk(p) (hene in terms of the trae on spaes of newforms). Reall the de�nition ofÆk(p) in (2.8), and let k(p) := �(�p) k2�1(�(�1)� 1).Proposition 5.3. Let p be an odd prime, and let k � 2 be even. Then(5.4) Hk(p) = k(p)� k2�1X̀=0 �� k2 � 1k2 � `� 1 �� � k2 � 1k2 � ` �� p` �Trnewk�2`(�0(8); p) + Æk�2`(p)� :Proof. De�ning N2(p) := �(�1) � 1 means that (5.3) holds for all k � 2. We make use ofanother inverse pair [18, Table 2.1℄ given by(5.5) an = nXj=0 �nj� bn�j; and bn = nXj=0(�1)j �nj� an�j:



14 SHARON FRECHETTE, KEN ONO, AND MATTHEW PAPANIKOLASDividing through by p k2 , (5.3) beomes�Nk(p) + 1p k2 = k2�1Xj=0 �k2 � 1j � Hk�2j(p)p k2�j :Setting n = k2 � 1, and using an = �N2n+2(p)+1pn+1 and bn = H2n+2(p)pn+1 in (5.5), we obtainHk(p) = � k2�1Xj=0(�1)j �k2 � 1j � pj (Nk�2j(p) + 1) :Therefore by Theorem 3.4 and our de�nition of N2(p), we obtainHk(p) = k(p)� k2�1Xj=0(�1)j �k2 � 1j � pj( k2�1�jXi=0 ��k � 2j � 2i �� �k � 2j � 2i� 1 ��� pi �Trnewk�2(i+j)(�0(8); p) + Æk�2(j+i)(p)�);Now setting ` = i+ j gives(5.6) Hk(p) = k(p)� k2�1Xj=0 k2�1X̀=j (�1)j �k2 � 1j ���k � 2j � 2`� j �� �k � 2j � 2`� j � 1 ��� p`�Trnewk�2`(�0(8); p) + Æk�2`(p)�:We may adjust the sum on ` to range over 0 � ` � k2 � 1, sine the binomial oeÆientsdependent on ` will all be zero if ` < j. We then obtain (5.4) by applying the fat that(5.7) � nm � = nXj=0(�1)j �nj�� 2n� 2jn�m� j� : �The proof of Theorem 1.1 is then omplete by applying the following lemma. �Lemma 5.4. Let p be an odd prime, and k a positive even integer. Then"k(p) = �k(p) + k2�1X̀=0 �� k2 � 1k2 � `� 1 �� � k2 � 1k2 � ` �� p`Æk�2`(p):Proof. If p � 3 (mod 4), the proof redues to showing thatk2�1X̀=0 �� k2 � 1k2 � `� 1 �� � k2 � 1k2 � ` �� (�1)` = 1:This follows from the easily proven fat that for any n � 0,nX̀=0 �� nn� ` �� � nn� `+ 1 �� (�1)` = 2nX̀=0 (�1)` � nn� ` � :



HYPERGEOMETRIC FUNCTIONS AND HECKE OPERATORS 15If p � 1 (mod 4), then we must show that(5.8) k2�1X̀=0 �� k2 � 1k2 � `� 1 �� � k2 � 1k2 � ` �� p` (Gk�2`(2a; p) +Gk�2`(2b; p))= (4a2 � p) k2�1 + (4b2 � p) k2�1:Using the de�nition of Gk�2`(s; p), we see that the left-hand side of (5.8) equalsk2�1X̀=0 k2�`�1Xi=0 (�1)ipi+`�k � 2� i� 2`i �� �� k2 � 1k2 � `� 1 �� � k2 � 1k2 � ` �� �(2a)k�2�2(`+i) + (2b)k�2�2(`+i)� :Setting j = `+ i, and noting that � k�2�j�`j�` � = 0 if ` > j, this expression beomesk2�1Xj=0(�1)jpj( k2�1X̀=0 (�1)`�k � 2� j � `j � ` ��� k2 � 1k2 � `� 1 �� � k2 � 1k2 � ` ��)� �(2a)k�2�2j + (2b)k�2�2j� :Expanding the right-hand-side of (5.8) using the binomial theorem, and omparing it withthe above expression, we see that the proof of (5.8) redues to showing the following equalityfor every j with 0 � j � k2 � 1.(5.9) �k2 � 1j � = k2�1X̀=0 (�1)`�k � 2� j � `j � ` ��� k2 � 1k2 � `� 1 �� � k2 � 1k2 � ` �� :We prove (5.9) using a third inverse relation. In [18, Table 2.2℄ (modulo notation), we havethe pair(5.10) aj = jX̀=0 ��p+ q`� `j � ` �+ q�p+ q`� `j � `� 1�� b`;bj = jX̀=0 (�1)`+j �p+ qj � `j � ` � a`;where p and q are integer parameters. Using (5.7), we may write� nn� j �� � nn� j + 1 � = nX̀=0 (�1)`�ǹ���2n� 2`j � ` �� � 2n� 2`j � `� 1�� :Choosing p = 2n and q = �1, and noting that � 2n�2`j�` � = 0 = � 2n�2`j�`�1 � whenever ` > j, wesee that this agrees with the �rst equation in the pair (5.10), with aj = [ nn�j ℄� [ nn�j+1 ℄ andbj = (�1)j ( nj ). Inverting the pair then gives(�1)j �nj� = jX̀=0 (�1)`+j �2n� j � `j � ` ��� nn� ` �� � nn� `+ 1 �� :



16 SHARON FRECHETTE, KEN ONO, AND MATTHEW PAPANIKOLASSetting n = k2 � 1 and simplifying then gives (5.9). �We now establish the truth of Koike's Conjeture, using the k = 6 ase of Theorem 1.1.Proof of Corollary 1.2. Setting k = 6 in Theorem 1.1 givesTrnew6 (�0(8); p) = �H6(p)� "6(p)� pTrnew4 (�0(8); p)= �p4 p�1X�=1 �(��) 3F2(�)2 + p4 4F3(1) + (1� �(�1))p2;where in the seond equality, we apply (1.5) and (1.12). The proof therefore redues toestablishing the following formula:(5.11) p5 6F5(1) = p4 p�1X�=1 �(��) 3F2(�)2:Applying Proposition 4.1 (2) twie to 6F5(1) givesp5 6F5(1) = p3 p�1Xx=1 p�1X�=1 �(x)�(1� x)�(�)�(1� �) 4F3(x�):Applying the hange of variables � 7�! �x , followed by x 7�! x� then yieldsp5 6F5(1) = p3 p�1X�=1 �(�) 4F3(�) � p"�(�1)p p�1Xx=1 �(x)�(1� x)�(1� x�)#= p4 p�1X�=1 �(�) 4F3(�) 2F1(�);where the seond equality follows by Proposition 4.1 (1). Now applying Proposition 4.1 (2)to 4F3(�), we see thatp5 6F5(1) = �(�1)p3 p�1X�1=1 p�1X�2=1�(�1�2)�(1� �2) 3F2(�1�2) 2F1(�1):Making the hange of variables �1�2 7�! � and using the inversion for 2F1� 1�1 � given inProposition 4.2 (1), we obtainp5 6F5(1) = �(�1)p3 p�1X�=1 3F2(�) p�1X�1=1�(�)�(�1 � �) 2F1� 1�1 �:Now putting �1 7�! 1�1 , we see thatp5 6F5(1) = �(�1)p3 p�1X�=1 3F2(�)" p�1X�1=1�(��1)�(1� ��1) 2F1(�1)# :By Proposition 4.1, the inner sum equals �(�1)p 3F2� 1��. Finally, using the inversion for3F2� 1�1 � given in Proposition 4.2, we obtain (5.11), thus ompleting the proof. �



HYPERGEOMETRIC FUNCTIONS AND HECKE OPERATORS 176. Congruenes for Trnewk (�0(8); p) modulo pHere we prove Theorems 1.3 and 1.4 using Theorem 1.1, as well as known fats onerningthe values of Gaussian hypergeometri funtions modulo p. We state some fats that werequire (for example, see [11℄ or [16, Set. 5℄).Proposition 6.1. Suppose that p is an odd prime.(1) If 1 � � � p� 1, thenp2 3F2(�) � A�1; 2; �; p� 12 � (mod p):(2) We have p5 6F5(1) � �A�2; 4; 1; p� 12 � (mod p):Proof of Theorem 1.3. By Theorem 1.1 and the de�nition of Hk(p) and "k(p), if k2 � 2(mod p� 1), then Trnewk (�0(8); p) � �Hk(p)� "k(p) (mod p)� �H4(p)� "4(p) (mod p)= Trnew4 (�0(8); p):Theorem 1.3 (1) follows from (1.14).Similarly, if k2 � 3 (mod p� 1), thenTrnewk (�0(8); p) � �Hk(p)� "k(p) � �H6(p)� "6(p) (mod p)� Trnew6 (�0(8); p) (mod p):By Corollary 1.2, it then follows thatTrnewk (�0(8); p) � �p5 6F5(1) (mod p):Theorem 1.3 (2) now follows immediately from Proposition 6.1 (2). �Proof of Theorem 1.4. By Theorem 1.1, it follows thatTrnewk (�0(8); p) � �Hk(p)� "k(p) (mod p):In view of Proposition 6.1 (1), it suÆes to show that(6.1) "k(p) � (1 + (�1) k2�1)2 � �p2 3F2(1)�k2�1 (mod p):Using (1.5), it follows that"k(p) � 12�(�1) k2 �1 + (�1) k2�1��p2 3F2(1)�k2�1 (mod p):If p � 1 (mod 4), this proves (6.1). If p � 3 (mod 4), then p2 3F2(1) = 0 by Theorem 4.3(2). Therefore, (6.1) is also true in these ases. This ompletes the proof. �



18 SHARON FRECHETTE, KEN ONO, AND MATTHEW PAPANIKOLAS7. The family 3E2(�) and the level 2 trae formulaWe devote this setion to the proof of Theorem 2.3. The proof follows similar lines tothe ones in [2℄, [4℄, of the formulas in Proposition 2.1. However, there are several di�ereneswhih require explanation. Before working out the proof, we go over some fats and lemmasabout the family of ellipti urves 3E2(�) : y2 = (x� 1)(x2 + �).Let K be any �eld of harateristi 6= 2, and onsider the family 3E2(�) to be de�ned overK. Its j-invariant is j(3E2(�)) = 64(3�� 1)3�(�+ 1)2 :Thus if j 6= 0 or 1728, then there are preisely three values of � 2 K so that j(3E2(�)) = j.Moreover, only j(3E2(13)) = 0, and only j(3E2(�19)) = j(3E2(1)) = 1728 (so if har(K) = 3,j(3E2(�)) is never 0 (= 1728) for � 2 K).If E=K is an ellipti urve, a K-quadrati twist of E is a quadrati twist of E by someD 2 K.Lemma 7.1. Let E=K be an ellipti urve with a K-rational point of order 2 in Weierstrassform E : y2 = x3 + 2�x2 + x, with �,  2 K and � 6= 0. Then there is a � 2 K so that Eis isomorphi over K to a K-quadrati twist of 3E2(�).Proof. The hange of oordinates x = �x0 � �, y = � 32 y0, gives the urve 3E2(�), where� = ��2�2 . Thus E is isomorphi over K to the �-quadrati twist of 3E2(�). �Remark. Lemma 7.1 overs all isomorphism lasses of ellipti urves E=K, exept whenj(E) = 1728.Lemma 7.2. Suppose that har(K) 6= 3. Let �1 2 K n f0;�1;�19g and �2 2 K n f0;�1g. If3E2(�1) �= 3E2(�2) over K, then �2 2 K(p��1).Proof. Any isomorphism 3E2(�2) �= 3E2(�1) over K is given by a hange of Weierstrassoordinates, x1 = u2x2 + r, y1 = u3y2. Let Æ� = �1�3p��11+9�1 . Then brute fore omputationyields the following possibilities:�2 = �1; u = �1; r = 0;�2 = ��5 + 3�1 � 8Æ� + 24�1Æ�3(1 + 9�1) ; u = �p2Æ�; r = 13 � 23Æ�:In the seond line, there are four possibilities: two hoies of Æ� and two possible signs on u.In any ase, the lemma follows immediately. �We also appeal to the following theorem of Shoof, speialized to our purposes. For aprime p, let Ip denote the set of all isomorphism lasses of ellipti urves over Fp , and de�neI(s; p) := fC 2 Ip j 8E 2 C; jE(Fp)j = p+ 1� sg;(7.1) I2(s; p) := fC 2 I(s; p) j 8E 2 C; E(Fp)[2℄ �= Z=2Z� Z=2Zg:(7.2)If E=Fp is an ellipti urve with jE(Fp)j = p+1� s, then we write [E℄ for its lass in I(s; p).Also, if C 2 Ip, we let Ctw 2 Ip be the lass of quadrati twists of urves in C by non-squares



HYPERGEOMETRIC FUNCTIONS AND HECKE OPERATORS 19in Fp . If the j-invariant of urves in a lass C is not 1728, then C 6= Ctw. Also, for d thedisriminant of an order O in an imaginary quadrati �eld, de�ne the sum of lass numbers(7.3) H(d) := XO�O0�Omax h(O0):Theorem 7.3 (Shoof [20, (4.5){(4.9)℄). If p is an odd prime, and s is an even integer with0 � s < 2pp, then jI(s; p)j = (2H(s2 � 4p) if s 6= 0,H(�4p) if s = 0.If additionally s � p+ 1 (mod 4), thenjI2(s; p)j = (2H�s2�4p4 � if s 6= 0,h(�p) if s = 0.We will need the following lemma on relations between lass numbers.Lemma 7.4 ([9, Lem. 2.3℄). Let O be an order of disriminant d in an imaginary quadrati�eld, and let O0 � O be an order with [O : O0℄ = f . Thenh�(O0) = h�(O) � f Ỳjf` prime�1� � d̀� 1̀� :Finally, in the proof of Theorem 2.3 we will make frequent use of the following easilyproven lemma.Lemma 7.5. Let D be a fundamental disriminant of an imaginary quadrati �eld. If p isan odd prime and s2 � 4p = t2D, then the following hold.(1) If s � p+ 1 (mod 4), then t is even.(2) If s � p� 1 (mod 4), then t is odd and D � 0 (mod 4).Proof of Theorem 2.3. Fix s even with 0 � s < 2pp, and write s2 � 4p = t2D as in thestatement of Theorem 2.2. De�ne(7.4) L(s; p) := f� j 1 � � � p� 2; 3A2(p; �) = �sg:We handle the ase p = 3 �rst. The only values of s to onsider are 0 and 2, and one simplyheks that jL(0; 3)j = 0 and jL(2; 3)j = 1:It is then a routine matter to hek that the p = 3 ase follows diretly from Theorem 2.2.For the remainder of the proof, we will assume that p � 5.The elements of I(s; p) an be paired up by quadrati twists so thatI(s; p) = fC1; : : : ; Ch; Ctw1 ; : : : ; Ctwh g:We de�ne eI(s; p) := fC1 [ Ctw1 ; : : : ; Ch [ Ctwh g;(7.5) eI2(s; p) := fC [ Ctw j C 2 I2(s; p)g:(7.6)



20 SHARON FRECHETTE, KEN ONO, AND MATTHEW PAPANIKOLASUltimately we want to relate jL(s; p)j, jeI(s; p)j, and jeI2(s; p)j. To do this we de�ne(7.7) F : L(s; p) �! eI(s; p);� 7�! [3E2(�)℄ [ [3E2(�)℄twand follow with some analysis of its properties.The ase to onsider now is when s 6= 0. Under this assumption we will show that(7.8) jL(s; p)j =Xf jt h� �s2 � 4pf 2 � (s; f)�(12 if �19 2 L(s; p),0 otherwise.When s 6= 0, we have �19 2 L(s; p) if and only if p � 1 (mod 4) with s = 2a or s = 2b. Wean therefore use (7.8) to math up terms in Theorem 2.2 with those in the statement ofTheorem 2.3:X0<s<2pps even Gk(s; p)Xf jt h��s2 � 4pf 2 � (s; f)= p�2X�=1Gk(3A2(p; �); p) +( 12Gk(2a; p) + 12Gk(2b; p); if p � 1 (mod 4),0 if p � 3 (mod 4).The main argument behind (7.8) is ontained in the ase where s 6= 0 and also 13 , �19 =2L(s; p). We will work out this ase �rst and then onsider the remaining details. For s evenwith 0 < s < 2pp, we will show that(7.9) jL(s; p)j = jeI(s; p)j+ 2jeI2(s; p)j:Now by Lemma 7.1, the funtion F is surjetive. Sine 13 , �19 =2 L(s; p), it follows fromLemma 7.2 that F is 3-to-1 at � 2 L(s; p) if and only if p�� 2 Fp , whih holds if and onlyif 3E2(�)(Fp)[2℄ �= Z=2Z� Z=2Z. For all other values of �, F is 1-to-1. Thus (7.9) holds.Moreover, if s � p� 1 (mod 4), then jeI2(s; p)j = 0 and also, by Lemma 7.5, t is odd andD � 0 (mod 4). Thus(7.10) jL(s; p)j = jeI(s; p)j = H(s2 � 4p) =Xf jt h� �s2 � 4pf 2 � ;where the seond equality follows from Theorem 7.3 and the third from the assumption that13 , �19 =2 L(s; p) (so h� s2�4pf2 � = h�� s2�4pf2 � for all f in onsideration). The result then agreeswith (7.8). On the other hand, if s � p + 1 (mod 4), then t is even by Lemma 7.5, and soby Theorem 7.3,(7.11) jL(s; p)j = jeI(s; p)j+ 2jeI2(s; p)j = H(s2 � 4p) + 2H �s2 � 4p4 �=Xf jt h��s2 � 4pf 2 � + 2Xf j t2 h��s2 � 4p4f 2 � ;



HYPERGEOMETRIC FUNCTIONS AND HECKE OPERATORS 21where the last equality follows beause 13 , �19 =2 L(s; p). From Lemma 7.4 it follows that(7.12) jL(s; p)j =Xf jt h��s2 � 4pf 2 � +Xf j t4 h��s2 � 4pf 2 �+ 11� �D2 � 12 �Xf j t2f - t4 h��s2 � 4pf 2 � :Now applying Lemma 7.4 again, we �nd(7.13) jL(s; p)j = �1 + �D2 ��Xf jtf - t2 h��s2 � 4pf 2 �+ 2Xf j t2 h� �s2 � 4pf 2 � ;whih veri�es (7.8).The next ase to onsider is 13 2 L(s; p), where still s 6= 0. Then p � 1 (mod 3) andD = �3, from whih it follows that t is even. Again by Lemma 7.1, F is surjetive. Also�13 2 F�2p , and so [3E2(13)℄ [ [3E2(13)℄tw 2 eI2(s; p). Sine F is only 1-to-1 at � = 13 and not3-to-1, we �nd(7.14) jL(s; p)j = jeI(s; p)j+ 2jeI2(s; p)j � 2:The argument then follows the same lines as in (7.11){(7.13), exept that when f = t, wehave h� s2�4pf2 � = h(�3) = 1 = 3h�(�3). Thus from this fat and from (7.14) we modify(7.11) slightly:jL(s; p)j = �2 + �Xf jt h��s2 � 4pf 2 ��+ 23 + �2Xf j t2 h��s2 � 4p4f 2 ��+ 43 :Then (7.8) follows preisely as in (7.12) and (7.13).Now suppose �19 2 L(s; p), where still s 6= 0. Then p � 1 (mod 4) and D = �4. Thereare 4 isomorphism lasses of urves over Fp with j-invariant 1728 [21, Prop. X.5.4℄, eahquarti twists of eah other. As elsewhere, write p = a2 + b2, with a, b > 0 and a odd, andthen it follows that s = 2a or s = 2b. We have(7.15) [3E2(�19)℄ [ [3E2(�19)℄tw 2 eI(2a; p):so if s = 2a the map F : L(2a; p) ! eI(2a; p) is surjetive but fails to be 3-to-1 at �19 .Therefore, jL(2a; p)j = jeI(2a; p)j+ 2jeI2(2a; p)j � 2:Sine 2b 6� p+1 (mod 4), we have jeI2(2b; p)j = 0. Furthermore by (7.15), F misses the lasspair of j-invariant 1728 in eI(2b; p), and sojL(2b; p)j = jeI(2b; p)j � 1:Sine h(�4) = 1 = 2h�(�4), we �nd the present versions of (7.10) and (7.11) to bejL(2a; p)j = �2 + �Xf jt h��s2 � 4pf 2 ��+ 12 + �2Xf j t2 h� �s2 � 4p4f 2 ��+ 1;jL(2b; p)j = �1 + �Xf jt h��s2 � 4pf 2 ��+ 12 :The rest of (7.8) follows exatly as in (7.12) and (7.13), whih onludes the ase s 6= 0.



22 SHARON FRECHETTE, KEN ONO, AND MATTHEW PAPANIKOLASFinally we suppose s = 0. We observe that Gk(0; p) = (�p) k2�1, so to onlude the proofof the theorem, we need to verify that(7.16) jL(0; p)j = �(p)�(0 if p � 1 (mod 4),1 if p � 3 (mod 4).The main reason for the disrepany modulo 4 is that �19 2 L(0; p) if and only if p � 3(mod 4). As before we onsider the various ases.If p � 1 (mod 4), then �19 =2 L(0; p), so by Lemma 7.1, F is surjetive. Sine 4 - (p+ 1),it follows from Lemma 7.2 that F is 1-to-1,jL(0; p)j = jeI(0; p)j = 12H(�4p) = 12h�(�4p) = �(p);where the seond equality follows from Theorem 7.3.If p � 3 (mod 4), we note that �19 2 L(0; p). Also 13 2 L(0; p) if and only if p � 2(mod 3), in whih ase �13 =2 F�2p , and so regardless [3E2(13)℄ =2 I2(0; p). Thus the funtionF is surjetive (Lemma 7.1) but fails to be 3-to-1 at �19 , so as in previous ases,jL(0; p)j = jeI(0; p)j+ 2jeI2(0; p)j � 2:However, now there is a slight di�erene from the other ases. We note that in fat[3E2(�19)℄ = [3E2(�19)℄tw sine p � 3 (mod 4) [21, Prop. X.5.4℄. Otherwise, for C 2 I(0; p)with C 6= [3E2(�19)℄, we have C 6= Ctw. For this reason,jeI2(0; p)j = 12 jI2(0; p)j+ 12 :Then ombining these equations with Theorem 7.3 and Lemma 7.4,jL(0; p)j = jeI(0; p)j+ 2jeI2(0; p)j � 2= 12H(�4p) + h(�p)� 1= 12h�(�4p) + 12h�(�p) + h�(�p)� 1= 32h�(�p) +� 32 if p � 3 (mod 8)12 if p � 7 (mod 8) � � h�(�p);whih agrees with (7.16). �Referenes[1℄ S. Ahlgren, Gaussian hypergeometri series and ombinatorial ongruenes, Symboli omputation,number theory, speial funtions, physis and ombinatoris (Gainesville, FL, 1999), Kluwer Aad.Publ., Dordreht, 2001, pp. 1{12.[2℄ S. Ahlgren, The points of a ertain �vefold over �nite �elds and the twelfth power of the eta funtion,Finite Fields Appl. 8 (2002), 18{33.[3℄ S. Ahlgren and K. Ono, A Gaussian hypergeometri series evaluation and Ap�ery number ongruenes,J. Reine Angew. Math. 518 (2000), 187{212.[4℄ S. Ahlgren and K. Ono, Modularity of a ertain Calabi-Yau threefold, Monatsh. Math. 129 (2000),177{190.[5℄ F. Beukers, Some ongruenes for the Ap�ery numbers, J. Number Theory 21 (1985), 141{155.[6℄ F. Beukers, Another ongruene for the Ap�ery numbers, J. Number Theory 25 (1987), 201{210.[7℄ B. J. Birh, How the number of points of an ellipti urve over a �xed prime �eld varies, J. LondonMath. So. 43 (1968), 57{60.[8℄ J. Greene, Hypergeometri funtions over �nite �elds, Trans. Amer. Math. So. 301 (1987), 77{101.
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