
THE COMBINATORICS OF TRACES OFHECKE OPERATORSSHARON FRECHETTE, KEN ONO, AND MATTHEWPAPANIKOLASIn elebration of Dik Askey's 70th birthday.Abstrat. We investigate the ombinatorial proper-ties of the traes of the n-th Heke operators on thespaes of weight 2k usp forms of level N . We establishexamples in whih these traes are expressed in termsof lassial objets in enumerative ombinatoris (e.g.tilings and Motzkin paths). We establish in general thatHeke traes are expliit rational linear ombinations ofvalues of Gegenbauer (a.k.a. ultraspherial) polynomi-als. These results arise from \pakaging" the Heketraes into power series in weight aspet. These gener-ating funtions are easily omputed using the Eihler-Selberg trae formula.1. Introdution and statement of resultsThroughout, let k be a positive integer, and let S2k(�0(N))(resp. Snew2k (�0(N))) denote the spae generated by the weight2k usp forms (resp. newforms) on the ongruene subgroup�0(N) (see [9℄, [10℄ for bakground on modular forms). Forpositive integers n and N whih are oprime, de�ne the inte-gers Tr2k(�0(N); n) and Trnew2k (�0(N); n) by(1.1) Trnew2k (�0(N); n) := trae of the n-th Heke op-erator on Snew2k (�0(N)),(1.2) Tr2k(�0(N); n) := trae of the n-th Heke op-erator on S2k(�0(N)).Reent works (for example, see [1℄, [5℄, [11℄, [12℄) have provenongruenes between suh traes and ombinatorial numberssuh as the Ap�ery numbersA(n) := nXj=0�n + jj �2�nj�2:2000 Mathematis Subjet Classi�ation. Primary 11F30; Seondary11F11.The seond author is grateful for the support of the National SieneFoundation, and the generous support of the Alfred P. Sloan, David andLuile Pakard, H. I. Romnes, and John S. Guggenheim Fellowships.The third author thanks the National Seurity Ageny and the NationalSiene Foundation. 1



2 S. FRECHETTE, K. ONO, AND M. PAPANIKOLASFor example, Ahlgren and the seond author [1℄ on�rmed aonjeture of Beukers thatTrnew4 (�0(8); p) � A�p� 12 � (mod p2)for every odd prime p. Many more suh ongruenes for traesare obtained by the authors in [5℄.In view of these ongruenes, it is natural to investigate theinstrinsi ombinatorial properties of these traes. In the n-aspet (i.e. where 2k and N are �xed), one does not expet to�nd a simple ombinatorial desription of these traes. How-ever, in the weight aspet these traes are indeed ombinato-rial numbers. We begin by presenting four examples of thisphenomenon.There are many instanes where these traes are ombina-torial numbers analogous to the Ap�ery numbers. For example,we establish the following fat.Theorem 1.1. If k � 2, thenTr2k(�0(7); 2) = �2� k�1Xr=0�k + r � 12r � � (�2)k�r�1:Theorem 1.1 provides a ombinatorial formula for the traeof T2 on the spae of usp forms for the ongruene subgroup�0(7). Suh formulas are often losely onneted to hyperge-ometri funtions. First we reall the traditional notation forthese funtions. If n is a positive integer, then de�ne (a)n by(1.3) (a)n := a(a + 1)(a+ 2) � � � (a+ n� 1):If n = 0, then let (a)n := 1. Gauss' 2F1 hypergeometrifuntions are de�ned by(1.4) 2F1� a; b x� := 1Xn=0 (a)n(b)n()nn! � xn:We establish the following formula involving 2F1 funtions(whih are Gegenbauer polynomials).Theorem 1.2. If k � 3, thenTr2k(�0(17); 3) = �2 + 3(�2)k�1 � 2F1� (2�k)=2; (3�k)=22�k ��� 9�+ (�2)k � 2F1� (1�k)=2; (2�k)=21�k ��� 9�:In general we shall see that, apart from ertain simple sum-mands, Heke traes are almost always sums of suh 2F1 eval-uations.In view of the ombinatorial formulas in Theorems 1.1 and1.2, it is natural to wonder whether these traes are onnetedto lassial topis in enumerative ombinatoris. The nexttwo examples on�rm this speulation.



THE COMBINATORICS OF TRACES OF HECKE OPERATORS 3If n is a non-negative integer, then let(1.5) T (n) := #ftilings of a 3� n retangle using1� 1 and 2� 2 tilesg.For example, here are the �ve tilings when n = 3.

Figure 1. Square tilings of 3� 3 retanglesIt turns out that Tr12(�0(3); 2) = 6 � T (3) = 30, an exampleof the following more general result.Theorem 1.3. If k � 3, thenTr2k(�0(3); 2) = 6(�1)k � T (k � 3):As another example, we onsider Motzkin paths. An el-evated Motzkin path of length n is a lattie path whih liesstritly above the x-axis, apart from its endpoints (0; 0) and(n; 0), with steps of the form (1; 1), (1;�1) and (1; 0). Ifn � 2, then let(1.6) Ma(n) := sum of areas bounded by length nelevated Motzkin paths and the x-axis.For example, here are the four elevated Motzkin paths oflength 5:
0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5Figure 2. Motzkin paths of length 5



4 S. FRECHETTE, K. ONO, AND M. PAPANIKOLASTherefore, Ma(5) = 20. It turns out that Tr12(�0(4); 3) =12 � Ma(5) = 240. This formula also generalizes to otherweights, as given in the following result.Theorem 1.4. If k � 3, thenTr2k(�0(4); 3) = 12(�1)k �Ma(k � 1):The four theorems above are speial ases of a general the-orem onerning the ombinatorial properties of the traes ofHeke operators in weight aspet. To illustrate this generalphenomenon, onsider the usp forms in S2k(�0(N3)) givenby(1.7) F new2k (N ; z) := 1Xn=1gd(N;n)=1Trnew2k (�0(N); n)qn(note that q := e2�iz throughout). By Atkin-Lehner theory,suh a usp form is essentially (and often exatly) the sum ofthe newforms in the spae Snew2k (�0(N)).To study the oeÆients of these usp forms, it is onve-nient to employ the Eihler-Selberg trae formula (for exam-ple, see [3℄, [4℄, [8℄, [13℄). Although these formulas are quiteformidable at �rst glane, we make some elementary observa-tions whih reveal some surprisingly simple properties leadingto results suh as the theorems above.For the group �0(8), onsider the forms F new2k (8; z):
(1.8) F new4 (8; z) = q �4q3 �2q5 +24q7 + � � �F new6 (8; z) = q +20q3 �74q5 �24q7 + � � �F new8 (8; z) = 2q �40q3 +348q5 �1680q7 + � � �... ... ... ... ... ...For general N , we use these oeÆients, grouped by olumn,to de�ne the power series(1.9) Rnew(�0(N); n; x) := 1Xk=1 Trnew2k (�0(N); n)xk�1:Similarly, we onsider the power series(1.10) R(�0(N); n; x) := 1Xk=1 Tr2k(�0(N); n)xk�1:For the forms in (1.8), alulations suggest that these seriesare rational funtions. In partiular, for levels 3; 5; and 7,



THE COMBINATORICS OF TRACES OF HECKE OPERATORS 5alulations suggest the following formulas:Rnew(�0(8); 3; x) = �4x + 20x2 � 40x3 + 8x4 + 20x5 + � � �= �4x27x3 + 15x2 + 5x+ 1 ;Rnew(�0(8); 5; x) = �2x� 74x2 + 348x3 � � � �= �50x3 � 84x2 � 2x3125x5 + 625x4 + 70x3 + 14x2 + 5x+ 1 ;Rnew(�0(8); 7; x) = 24x� 24x2 � 1680x3 + � � �= 168x2 + 24x2401x4 + 392x3 + 78x2 + 8x+ 1 :These formulas prove to be orret, and indeed more is true.For generating funtions of traes in general, we prove thefollowing result.Theorem 1.5. If N is a positive integer, and if n � 2 isprime to N , then Rnew(�0(N); n; x) and R(�0(N); n; x) areboth rational funtions in Q (x). Moreover, their poles are allsimple and are algebrai numbers of degree � 2 over Q .In Setion 3, we obtain Theorem 3.3, a result desrib-ing a basis of rational funtions whih are summands forR(�0(N); n; x). By the Atkin-Lehner theory of newforms,Theorem 1.5 follows as an immediate orollary. The mostompliated rational funtions appearing in Theorem 3.3 areof the form nx + 1n2x2 + (2n� s2)x+ 1 :Using the well known generating funtions for the Gegenbauer(a.k.a. ultraspherial) polynomials C(�)n (r)(1� 2rx+ x2)�� = 1Xn=0 C(�)n (r)xn(for example, see (6.4.10) of [2℄), and the fat thatC(�)n (r) = (�)nn! (2r)n � 2F1� �n=2; (1� n)=21� n� � 1r2�(for example, see (6.4.12) of [2℄), it is not diÆult to deduethat(1.11) nx+ 1n2x2 + (2n� s2)x + 1 = 1 + nx+ 1Xm=1(s2 � 2n)m2F1� �m=2; (1�m)=2�m ��� 4n2(2n�s2)2�xm+ n 1Xm=1(s2 � 2n)m2F1� �m=2; (1�m)=2�m ��� 4n2(2n�s2)2�xm+1:



6 S. FRECHETTE, K. ONO, AND M. PAPANIKOLASConsequently, it follows in general that Heke traes are es-sentially simple sums of values of Gegenbauer polynomials asin Theorem 1.2.Theorem 3.3, whih is not diÆult to prove, follows from ananalysis of the intrinsi ombinatorial struture of the Eihler-Selberg trae formula for Heke operators. In Setion 2, wereall a formulation of this result, and we make some keyobservations. In the last setion, we derive Theorems 1.1through 1.4.Aknowledgements. The authors are grateful to the ref-eree of [5℄, whose omments inspired them to look for theonnetions obtained in the present paper. The authors alsothank Jeremy Rouse for produing Figures 1 and 2.2. The Eihler-Selberg Trae formulaOur methods involve reformulating the Eihler-Selberg traeformula for Tr2k(�0(N); n) (see [3℄, [4℄, [13℄). We utilize theversion of this trae formula due to Hijikata (see [7℄, [8℄). Fixthroughout positive integers k, N , and n. LetE = fs 2 Z j s2 � 4n < 0g;(2.1) H = fs 2 Z j 9t 2 Z+; s2 � 4n = t2g;(2.2) P = fs 2 Z j s2 � 4n = 0g:(2.3)Deompose E into the disjoint union E = E 0 [ E 00, wheres 2 E 0 (resp. s 2 E 00) if the disriminant of Q(ps2 � 4n) is 1modulo 4 (resp. 0 modulo 4). For eah s 2 E [H [P , de�nethe non-negative integer t = t(s) by(2.4) s2 � 4n = 8>>><>>>:mt2 if s 2 E 0, and m is a fund. dis.4mt2 if s 2 E 00, and 4m is a fund. dis.t2 if s 2 H,0 if s 2 P .Then de�ne sets of integers(2.5) F (s) := (ff 2 Z+ j f divides t(s)g if s 2 E [H,f1g if s 2 P .Furthermore, for s 2 E [ H [ P , de�ne y and �y to be theroots of X2 � sX + n = 0, and aordingly let(2.6) a(s; k; n) := 8>>>>><>>>>>:
12 � y2k�1 � �y2k�1y � �y if s 2 E,minfjyj; j�yjg2k�1jy � �yj if s 2 H,14 jyjnk�1 if s 2 P .



THE COMBINATORICS OF TRACES OF HECKE OPERATORS 7Finally, let(2.7) Æ(k; n) := (Qpjn 1�pordp(n)+11�p if k = 1,0 otherwise;and if n is a perfet square,(2.8) �(k;N; n) := 112(2k � 1)nk�1N ỲjN (1 + 1=`);otherwise �(k;N; n) := 0.Theorem 2.1 (Hijikata [7, Thm. 0.1℄). If N and n are posi-tive oprime integers, and k � 1, thenTr2k(�0(N); n) = Æ(k; n) + �(k;N; n)� Xs2E[H[P a(s; k; n) Xf2F (s) b(s; f; n)(s; f; N; n);where b(s; f; n), (s; f; N; n) are rational numbers dependingonly on s, f , N , and n, and are given expliitly (see [7, x0℄,[8, x2℄).Remark. The numbers b(s; f; n) in the statement of the theo-rem are given in terms of lass numbers of orders of imaginaryquadrati �elds if s 2 E and in terms of Euler's �-funtion ifs 2 H. The numbers (s; f; N; n) are alulated by ountingsolutions to ertain ongruenes. In both ases the numbersan be alulated expliitly, but for brevity we do not repeattheir de�nitions here. The main observation is that their val-ues are independent of the weight 2k.3. Proof of Theorem 1.5Throughout this setion we �x oprime positive integers nand N , and we reall the de�nition of the generating funtionR(�0(N); n; x) = 1Xk=1 Tr2k(�0(N); n)xk�1from (1.10). In this setion we explore the ombinatoris ofthe variation of Tr2k(�0(N); n) in k. By the Atkin-Lehner the-ory of newforms, Rnew(�0(N); n; x) is an integral linear om-bination of R(�0(M); n; x), where M j N . Hene it suÆesto examine R(�0(N); n; x). In partiular, in Theorem 3.3, amore preise version of Theorem 1.5, we determine an expliitformula for R(�0(N); n; x).Continuing with the notation of Setion 2, we �rst makethe following observation about the oeÆients a(s; k; n) fors 2 E.Proposition 3.1. If s 2 E, thena(s; k; n) = 12 k�1Xj=0(�1)j �2k � 2� jj �njs2k�2j�2:



8 S. FRECHETTE, K. ONO, AND M. PAPANIKOLASProof. From (2.6), when s 2 E,(3.1) a(s; k; n) = 12 � y2k�1 � �y2k�1y � �y = 12 2k�2Xj=0 yj�y2k�2�j:This sum an be expressed in terms of powers of y�y and y+�y,using the relation(3.2) ym+�ym = bm=2Xj=0 (�1)j mm� j �m� jj � (y�y)j(y+�y)m�2j:Then a straightforward indution, in onjuntion with therelations y+ �y = s and y�y = n, yields the desired expression.�We now determine the generating funtion for the powerseries with oeÆients a(s; k; n), for s 2 E.Lemma 3.2. If s 2 Z and s2 � 4n < 0, then1Xk=1 a(s; k; n)xk�1 = 12 � nx + 1n2x2 + (2n� s2)x+ 1 :Proof. The proof follows from Proposition 3.1 and from(3.3) 1Xj=1(�1)j �2k + jj � xj = 1(1 + x)2k+1 ;whih is simply the binomial theorem. More spei�ally, wehave1Xk=1 a(s; k; n)xk�1 = 12 1Xk=1 k�1Xj=0(�1)j � 2k�2�jj �njs2k�2j�2 xk�1;= 12 1Xk=0 1Xj=0(�1)j � 2k+jj �njs2kxk+j;= 12 1Xk=0 s2kxk(nx + 1)2k+1 ;where the �rst equality follows from Proposition 3.1, the se-ond after reindexing the sums, and the third from (3.3). �Now let(3.4) S(N; n) := (N12Q`jN (1 + 1=`) if n a perfet square,0 otherwise;and(3.5)�(N; n) := (pn2  (2pn; 1; N; n) if n a perfet square,0 otherwise,where  (2pn; 1; N; n) is de�ned as in [7, x0℄.



THE COMBINATORICS OF TRACES OF HECKE OPERATORS 9Theorem 3.3. If N and n are oprime positive integers, thenR(�0(N); n; x) = Æ(1; n) + S(N; n) nx + 1(nx� 1)2 + �(N; n)nx� 1+ Xdjnd<pn 2d2n� d2 Xf j(nd�d) b �nd + d; f; n�  �nd + d; f; N; n�d2x� 1� 12 Xs2Zs2�4n<0 Xf jt(s) b(s; f; n)(s; f; N; n) nx + 1n2x2 + (2n� s2)x+ 1 :Proof. We proeed by using the trae formula from Theo-rem 2.1. The �rst and seond terms in the proposed for-mula for R(�0(N); n; x) follow easily from (2.7) and (2.8).The third term arises from the terms in the trae formulaorresponding to s 2 P . (We make use of the fat thatb(s; 1; n) = 1 as in [7, x0℄.) The sum on divisors d of n withd < pn orresponds to the terms in the trae formula om-ing from s 2 H. Finally, using Lemma 3.2, the last sumorresponds to the sum on s 2 E in the trae formula. �Remark. By taking n = 1, Theorem 3.3 provides generat-ing funtions for dimensions of spaes of modular forms. Forexample,1Xk=1 dimS2k(�0(25))xk�1 = x3 + 4x2 + 5x(x+ 1)(x� 1)2= 5x+ 9x2 + 15x3 + � � � :4. Combinatorial TheoremsHere we prove Theorems 1.1 through 1.4. These resultsfollow from an analysis of the generating funtions desribedin Theorem 3.3. Using this result, it is straightforward toverify the following proposition.Proposition 4.1. With the notation as in (1.10), we haveR(�0(3); 2; x) = 2xx� 1 + 2x2x+ 1= �6x2 + 6x3 � 18x4 + � � � ;R(�0(7); 2; x) = 3 + 2x� 1 � 2x+ 14x2 + 3x+ 1= �x� x2 � 9x3 + � � � ;R(�0(4); 3; x) = 4 + 3x� 1 � 13x+ 1= �12x2 + 24x3 � � � � ;R(�0(17); 3; x) = 4 + 2x� 1 � 6x+ 29x2 + 2x+ 1= �4x+ 20x2 � 28x3 � � � � :



10 S. FRECHETTE, K. ONO, AND M. PAPANIKOLASProof of Theorem 1.1. By Proposition 4.1, we have thatR(�0(7); 2; x) = 3 + 2x� 1 � 2x+ 14x2 + 3x+ 1= 1� 2 1Xn=1 xn � 2x+ 14x2 + 3x+ 1 :To prove the theorem, it suÆes to show thata(n) = nXj=0�n + j2j �(�2)n�j;where the integers a(n) are de�ned by2x+ 14x2 + 3x+ 1 = 1Xn=0 a(n)xn = 1� x� x2 + 7x3 � � � � :This is a straightforward alulation involving reurrene re-lations. �Proof of Theorem 1.2. By Proposition 4.1, we haveR(�0(17); 3; x) = 4 + 2x� 1 � 6x+ 29x2 + 2x+ 1= 2� 2 1Xn=1 xn � 6x+ 29x2 + 2x+ 1 :The theorem follows from (1.11). �Proof of Theorem 1.3. By Proposition 4.1, we haveR(�0(3); 2; x) = 2xx� 1 + 2x2x + 1 = 6x22x2 � x� 1 :By replaing x by �x, we obtain the known reurrene for6T (n) (see Theorem 1 of [6℄). �Proof of Theorem 1.4. By Proposition 4.1, we haveR(�0(4); 3; x) = 4 + 3x� 1 � 13x+ 1 = 12x23x2 � 2x� 1 :By replaing x by �x, we obtain the known reurrene for12Ma(n) (see Propositions 1 and 2 of [14℄). �In view of the results presented here, it is natural to revisitthe properties of the Heke operators from a purely ombi-natorial perspetive. For example, it is natural to ask thefollowing question.Question. Are there diret ombinatorial proofs of Theorems1.1 through 1.4 using the theory of modular symbols?
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