
NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONSBEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINAbstrat. Let � be a uspidal automorphi representation of GL(2; AK ). Suppose there exists a singlenon-vanishing nth order twist of the L-series assoiated to � at the enter of the ritial strip. We use themethod of multiple Dirihlet series to establish that there exist in�nitely many suh non-vanishing nth ordertwists of the L-series of the representation at the enter.
1. Introdution and Statement of the Main ResultLet E be an ellipti urve de�ned over a number �eld K: The behavior of the rank of the L-rationalpoints E(L) as L varies over some family of algebrai extensions of K is a problem of fundamental interest.The onjeture of Birh and Swinnerton-Dyer provides a means to investigate this problem via the theoryof automorphi L-funtions.Assume that the L-funtion of E oinides with the L-funtion L(s; �) of a uspidal automorphi repre-sentation of GL(2) of the adele ring A K : Let L=K be a �nite yli extension and � a Galois harater of thisextension. Then the onjeture of Birh and Swinnerton-Dyer equates the rank of the �-isotypi omponentE(L)� of E(L) with the order of vanishing of the twisted L-funtion L(s; � 
 �) at the entral point s = 12 :In partiular, the �-omponent E(L)� is �nite (aording to the onjeture) if and only if the entral valueL( 12 ; � 
 �) is non-zero.Thus it beomes of arithmeti interest to establish non-vanishing results for entral values of twists ofautomorphi L-funtions by haraters of �nite order. For quadrati twists this problem has reeived muhattention in reent years. In this paper we address this question for twists of higher order. Our main resultis ontained in the following theorem.Theorem 1.1. Fix a prime integer n > 2; a number �eld K ontaining the nth roots of unity, and a suÆ-iently large �nite set of primes S of K: Let � be a self-ontragredient uspidal automorphi representationDate: November 7, 2004.2000 Mathematis Subjet Classi�ation. Primary 11F11. 1



2 BEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINof GL(2; A K ) whih has trivial entral harater and is unrami�ed outside S: Suppose there exists an id�elelass harater �0 of K of order n unrami�ed outside S suh thatL( 12 ; � 
 �0) 6= 0:Then there exist in�nitely many id�ele lass haraters � of K of order n unrami�ed outside S suh thatL( 12 ; � 
 �) 6= 0:We refer the reader to Setion 2 for the de�nition of the �nite set S: Fearnley and Kisilevsky haveproven a related result for the L-funtion L(s; E) of an ellipti urve de�ned over Q: In [5℄ they show thatif the algebrai part Lalg( 12 ; E) of the entral L-value is nonzero mod n; then there exist in�nitely manyDirihlet haraters � of order n suh that L( 12 ; E; �) 6= 0: We note that if L( 12 ; E) 6= 0 then the hypothesisLalg( 12 ; E) 6� 0 mod n is satis�ed for all suÆiently large primes n: We �nd it interesting (and frustrating!)that, although the methods of [5℄ (based on the arithmeti of modular symbols) are ompletely di�erentfrom the methods of this paper, both our result and theirs require some nonvanishing assumption. Anunonditional result in the ubi ase (n = 3) has reently been established in [1℄. We omment more onthis below.The quadrati ase (n = 2) is partiularly aessible beause, by the results of Waldspurger [17℄, Kohnenand Zagier [13℄, and others, the existene of a quadrati harater � suh that L( 12 ; � 
 �) 6= 0 impliesthe existene of a metapleti uspidal automorphi representation e� on the double over of GL(2; A K )orresponding to �. The orrespondent e� is related to � in the following way. If L(w; e� 
 e�) denotes theRankin-Selberg onvolution of e� with itself then(1.1) L(w; e� 
 e�) =Xd6=0 L( 12 ; � 
 �(2)d0 )Pd(�)Ndw ;up to orretions at a �nite number of plaes. Here d = d0d22, with d0 square free, the �(2)d0 are quadratiharaters with ondutor d0, and the Pd(�) are ertain non-zero orretion fators whih are trivial whend2 = 1. We defer a preise de�nition of suh objets until Setion 2. These orretion fators are small inthe sense that, for any �xed d0,(1.2) the sum Xd2 6=0 Pd0d22(�)Nd2w2 onverges absolutely for any w with Re(w) > 12 .



NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONS 3This onnetion between � and e� auses the existene of one non-vanishing quadrati twist to imply theexistene of in�nitely many d0 suh that L( 12 ; � 
 �(2)d0 ) 6= 0: This is beause if e� 6= 0 then L(w; e� 
 e�) hasa pole at w = 1. However the right hand side of (1.1) will onverge at w = 1 if there are only �nitely manynon-vanishing quadrati twists.For n > 2 there are no known results relating nth order twists of the L-series of � to Fourier oeÆientsof other automorphi objets. In fat even a onjetural generalization of the results of Waldspurger tothe ase n > 2 remains mysterious. However, in this paper we desribe how a generalization of (1.1) anstill be found by assoiating � to a ertain metapleti form. This generalization is at least suÆient toanswer the question of whether one non-vanishing twist of a given order implies the existene of in�nitelymany non-vanishing twists of that order. It may ultimately shed some light on the question of the orretgeneralization of Waldspurger's results, but at the moment this aspet remains opaque.We will desribe in detail a Dirihlet series that has the rough form(1.3) Z(n)(s; w) =Xd6=0 L(s; � 
 �(n)d0 )"(d0)Pd(s; �)Ndw ;where d = d0dnn with d0 nth power-free (see Setion 2). Here "(d0) denotes an nth order Gauss sum orre-sponding to the harater �(n)d0 and Pd(s; �) again denotes ertain orretion fators whih are trivial whendn = 1. These are also small, in the sense that for Re(s) � 12 ,(1.4) the sum Xdn 6=0 Pd0dnn(s; �)Ndnwn onverges absolutely for any w with Re(w) > 1n + 19 :The fration 19 omes from the bound of Kim and Shahidi [12℄.The series Z(n)(s; w) is \natural" for the following reasons. First, when n = 2 and e� exists, Z(n)( 12 ; w)agrees at almost all plaes with the Rankin-Selberg onvolution L(w; e� 
 e�). Seond, after an interhangein the order of summation, it has an automorphi interpretation as a Rankin-Selberg onvolution of � withan Eisenstein series on the n-fold over of GL(2). In the ase n = 2 , this automorphi interpretation ofZ(n)(s; w) was exploited by Friedberg and Ho�stein [8℄. In the ase n = 3 the automorphi interpretationwas used by She [16℄ to establish a non-vanishing result for ubi twists of one partiular �.In this paper we do not use the automorphi interpretation of Z(n)(s; w). Instead we take the far easierapproah of the method of multiple Dirihlet series (disussed in brief at the onlusion of this setion).



4 BEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINUsing this method we establish an analyti ontinuation and exhibit a �nite group of funtional equationsfor Z(n)(s; w) in the two variables s and w. Speializing to s = 12 , we obtain a Dirihlet series Z(n)( 12 ; w)with a funtional equation in w. The ondition (1.4) implies that if L( 12 ; �
�(n)d0 ) 6= 0 for only �nitely manyd0 then Z(n)( 12 ; w) must onverge for Re(w) > 1n + 19 . We then show that for n � 3 (i.e. 1n + 19 < 12 ), thisis inompatible with the funtional equation. It immediately follows that the existene of one non-vanishingtwist implies the existene of in�nitely many.The method an easily be taken a bit further to establish a mean value result of the form, for Re(s) > 12 ,(1.5) XL(s; � 
 �(n)d0 ) "(d0)Pd( 12 ; �)W �NdX � � (s; �)X 12+ 1n ;whereW is any suitable smoothing funtion. The onstant (s; �) is a very interesting funtion; it is a simplemultiple of L(s + 12n ; � 
 �(n)); the Rankin-Selberg onvolution of � with the theta funtion on the n-foldover of GL(2), evaluated at the point s+ 12n . When n = 2 and s = 12 , the series L( 34 ; �
 �(2)) is essentiallythe symmetri square L-series of � evaluated at 1, the edge of the ritial strip. Thus in this ase the L-seriesdoes not vanish, and simple onditions on the sign of the funtional equation of � determine whether or not( 12 ; �) equals zero. Beause of this, unonditional mean value and non-vanishing results an be derived, aswas done in [8℄. For n > 2, however, the L-series L( 12 + 12n ; � 
 �(n)) does not have an Euler produt andis evaluated at a point inside the ritial strip. Thus the question of vanishing beomes quite subtle. Itis beause of this that we annot yet eliminate the possibility that the entire lass of twists L( 12 ; � 
 �(n)d0 )vanishes identially. In [1℄ a di�erent multiple Dirihlet series is onstruted, spei� to the ase n = 3. Inthis ase the (ubi) Gauss sum is removed from the numerator and the onstant (s; �) beomes essentiallyL(3s; �; sym3). As a onsequene unonditional non-vanishing and mean value results an be obtained inthe ase n = 3. The question of generalizing this method to n � 4 remains open and extremely interesting.We lose the introdution with a brief overview of the method of multiple Dirihlet series. MultipleDirihlet series are funtions of several omplex variables of the formXm1;:::;mr a(m1;m2; : : : ;mr)ms11 ms22 � � �msrr :These an be onsidered, aording to the order of summation, as a Dirihlet series in any one of the variableswhose oeÆients are again Dirihlet series. For example, in (1.3) the multiple Dirihlet series Z(n)(s; w) isa Dirihlet series in the variable w with numerator L(s; �
�(n)d0 )"(d0)Pd(s; �), a family of Dirihlet series in



NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONS 5the variable s. If a omponent Dirihlet series possesses a funtional equation, then the multiple Dirihletseries inherits a orresponding funtional equation. Interhanges in the order of summation may revealnew families of Dirihlet series in the numerator with new funtional equations. Interhanging the order ofsummation in (1.3) produes a Dirihlet series formed from nth order Gauss sums. Suh series arise in thetheory of Eisenstein series on the n-fold over of GL2 as introdued by Kubota in [14℄, and extended byPatterson [15℄ and Kazhdan-Patterson [11℄.Classial onvexity estimates on the onstituent Dirihlet series give a region of absolute onvergene forthe multiple Dirihlet series. One exat funtional equations are obtained, one an apply them to the domainof onvergene to obtain a new domain whih has a non-empty intersetion with the original. This providesthe analyti ontinuation to the union of the original domain and its translates. An analyti ontinuation tothe onvex hull of this union follows from a onvexity theorem for several omplex variables. In the ase ofZ(n)(s; w), we will show that we obtain a region whose onvex hull is all of the omplex spae C 2 :This approah was �rst detailed by Bump, Friedberg, and Ho�stein in [2℄ and [3℄ where instanes ofmultiple Dirihlet series possessing these properties were atalogued. Fisher and Friedberg [6℄ generalizedthese arguments to quadrati twists of automorphi forms on GL(2) over arbitrary funtion �elds. Thismethod was also arried out by Friedberg, Ho�stein and Lieman [9℄ on a multiple Dirihlet series whoseoeÆients were weighted nth order Dirihlet L-series in order to determine mean-value estimates for theseL-series. Finally, see [1℄ for a di�erent and onsiderably more ompliated onstrution in the ase n = 3and GL(2).The authors thank Sol Friedberg and Adrian Diaonu for many helpful disussions and the referee for avery areful reading of this work.2. Preliminaries and Outline of MethodFix n > 2 and let K be a number �eld ontaining the nth roots of unity. Let O denote the ring ofintegers of K. Let � be a uspidal automorphi representation of GL(2; A K ). Let Sf be a �nite set ofnon-arhimedean plaes suh that Sf ontains all plaes dividing n, the ring of Sf -integers OSf has lassnumber 1, and � is unrami�ed outside Sf . Let S1 denote the set of arhimedean plaes and let S = Sf [S1.



6 BEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINLet �a�� be the power residue symbol attahed to the extension K( npa) of K. We extend the nth powerresidue symbol as in Fisher and Friedberg [6℄. We review the de�nition.For eah plae v, let Kv denote the ompletion of K at v. For v non-arhimedean, let Pv denote theorresponding ideal of O, and let qv = NPv denote its norm. Let C = Qv2Sf Pnvv with nv � 1 suÆientlylarge so that if a 2 Kv, and ordv(a � 1) � nv, then a 2 (K�v )n. Let HC be the ray lass group modulo Cand let RC = HC
Z=nZ. Write the �nite group RC as a diret produt of yli groups, hoose a generatorfor eah, and let E0 be a set of ideals of O prime to S whih represent these generators. For eah E0 2 E0hoose mE0 2 K� suh that E0OSf = mE0OSf . Let E be a full set of representatives for RC of the formQE02E0 EnE00 , with nE0 2 Z. If E = QE02E0 EnE00 is suh a representative, then let mE = QE02E0 mnE0E0 .Note that EOSf = mEOSf for all E 2 E . For onveniene we suppose that O 2 E and mO = 1.Let J (S) denote the group of frational ideals of O oprime to Sf . Let I; J 2 J (S) be oprime. WriteI = (m)EGn with E 2 E , m 2 K�, m � 1 mod C, and G 2 J (S) suh that (G; J) = 1. Then as in [6℄,the nth power residue symbol �mmEJ � is de�ned, and if I = (m0)E0G0n is another suh deomposition, thenE0 = E and �m0mEJ � = �mmEJ �.In view of this de�ne the nth power residue symbol � IJ � by � IJ � = �mmEJ � : If I is nth-power-free, we denoteby �I the harater �I(J) = � IJ �. This harater depends on the hoies above, but we suppress this fromthe notation. Let I(S) denote the integral ideals prime to Sf . Let � be as above and let LS(s; � 
 �J) bethe L-funtion for � twisted by the harater �J , with the plaes in S removed. (Note that the Euler fatoris also 1 at the plaes dividing J .) If � is any id�ele lass harater then the twisted L-funtion L(s; � 
 �)satis�es a funtional equation(2.1) L(s; � 
 �) = "(s; � 
 �)L(1� s; ~� 
 ��1);where "(s; � 
 �) is the epsilon fator of � 
 �.Proposition 2.1. Let E; J 2 I(S) be nth-power-free with assoiated haraters �E ; �J of ondutors fE ; fJrespetively. Suppose that �J = �E�I with I 2 K�, I � 1 mod C: Then(2.2) "(s; � 
 �J ) = "(1=2; �I)2 ��(fJ=fE) (NfJ =NfE )2(1=2�s) "(s; � 
 �E):



NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONS 7Here "(1=2; �I) is given by a (normalized) nth order Gauss sum, as in Tate's thesis. We heneforth assumethat � has trivial entral harater (and is self-ontragredient). LetLS(s; �) = Yv=2S(1� �vq�sv )�1 (1� �vq�sv )�1 = XI2I(S) a(I)(NI)s ;where �v and �v are the Satake parameters assoiated to � at v. For J in I(S), write J = J0Jnn , with J0the nth power free part of J . For I in I(S), let eI represent the part of I oprime to J0.For ideals I and J , de�ne the funtion G(I; J) byG(I; J) = Yvordv(I)=�ordv(J)=�G(P�v ; P �v );where, for �; � � 0;(2.3) G(P�v ; P �v ) = 8>>>>>><>>>>>>:1 if � = 0q�=2�1v (qv � 1) if � � �; � � 0(n); � > 0�q�=2�1v if � = � � 1; � � 0(n); � > 0q(��1)=2v if � = � � 1; � 6� 0(n); � > 00 otherwise.To simplify notation, let � denote the Dedekind zeta funtion of K and �S the zeta funtion with the plaesin S removed.De�ne the following pair of multiple Dirihlet series:(2.4) Z1(s; w;�;  1;  2) = �S(nw � n=2 + 1) XI;J2I(S) a(I) 1(I) 2(J)G(I; J)�J0(eI )"(J0)(NI)s (NJ)w ;and(2.5) Z2(s; w;�;  1;  2) = �S(nw � n=2 + 1) XI;J2I(S) a(I) 1(I) 2(J)G(I; J)�J0 (eI)"(J0)(NI)s (NJ)w ;where  1;  2 are two id�ele lass haraters of RC (hene of order dividing n and ondutor dividing C).The notation "(J0) simply abbreviates "( 12 ; �J0). (Note that Z1 and Z2 are essentially dual objets up toonjugation of �J0 and "(J0).)By summing �rst over J , we have(2.6) Z1(s; w;�;  1;  2) = XI2I(S) a(I) 1(I)D(w; I;  2)(NI)s ;



8 BEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINwhere(2.7) D(w; I;  2) = �S(nw � n=2 + 1) XJ2I(S)  2(J)G(I; J)�J0(eI)"(J0)(NJ)wis a Dirihlet series obtained from the Fourier oeÆient of an Eisenstein series de�ned on an appropriatelyrestrited ongruene subgroup � of the n-fold over of GL(2). (This motivates the de�nition (2.3).) Thesemetapleti Eisenstein series were �rst formulated by Kubota (f. [14℄) and were studied in further detailby Kazhdan and Patterson in [11℄. In partiular, Kazhdan and Patterson exhibited a funtional equation asw 7! 1� w and determined the polar struture: D(w; I;  2) has possible simple poles at w = 12 � 1n and isholomorphi elsewhere. (For a general introdution to the subjet, we refer the reader to [10℄.)Using the above theory together with one-variable onvexity results, one sees that for every � > 0(2.8) ��(w � 12 + 1n )(w � 12 � 1n )D(w; I;  2)�� <<� maxf1; (NI)(1�Re(w))=2+�; (NI)1=2�Re(w)+�g:The implied onstant also has a dependene on w, and the bound is uniform for w in ompata. Hene,we an obtain a region of absolute onvergene for our multiple Dirihlet series as a onvolution of a GL(2)automorphi L-series and the above series D(w; I;  2). That is, for i = 1; 2 we de�ne(2.9) eZi(s; w;�;  1;  2) = s(1� s)(w � 12 � 1n )(w � 12 + 1n )Zi(s; w;�;  1;  2);and it follows from (2.8) that eZi(s; w;�;  1;  2) for i = 1; 2 is holomorphi in the region(2.10) R0 = f(s; w)jRe(s) > maxf 109 ; 2918 � Re(w)2 ; 2918 �Re(w)g g:This is demonstrated arefully in Setion 5.Our multiple Dirihlet series have another fruitful interpretation upon interhanging the order of sum-mation, so that the inner sum is over ideals I 2 I(S). To present this form, �rst de�ne the orretionpolynomials Q(s; J ;�; �J0 1), for ideals J =Qv P ordv(J)v , by(2.11) Q(s; J ;�; �J0 1) = Yvordv(J)=nQ(s; Pnv ; �J0 1;�) n�1Yk=1 Yvordv(J)=n+k a(Pn+k�1v ) 1(P k�1v )q(n+k�1)s�n+k�12v ! ;where(2.12) Q(s; Pnv ; �;�) = a(Pnv )q n2 �nsv � a(Pn�1v )�(Pv)q n2 �(n+1)sv� a(Pn�1v )�(Pv)q n2 �1�(n�1)sv + a(Pn�2v )q n2 �1�nsv ;



NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONS 9and where we make the onvention that a(x) = 0 for all non-integral x. Then we will show the followingresult in Setion 3.Proposition 2.2. In the region Re(s) > 10=9 and Re(w) > 1(2.13) Z1(s; w; �; 1;  2) = �S(nw � n=2 + 1) XJ2I(S) "(J0) 2(J)LS(s; � 
 �J0 1)(NJ)w Q(s; J ;�; �J0 1);and(2.14) Z2(s; w; �; 1;  2) = �S(nw � n=2 + 1) XJ2I(S) "(J0) 2(J)LS(s; � 
 �J0 1)(NJ)w Q(s; J ;�; �J0 1):Given the results of Proposition 2.2, we an use upper bounds on the Fourier oeÆients of our L-seriesand the �nite Dirihlet polynomials Q, together with standard one-variable onvexity arguments, to showthat the funtions eZi(s; w; �; 1;  2) for i = 1; 2 are holomorphi in the regionR00 = f(s; w)jRe(w) > maxf1; 199 �Re(s); 2� 2Re(s)g g:Sine R0 and R00 have a non-empty intersetion, we see that the funtions eZi(s; w; �; 1;  2) for i = 1; 2have an analyti ontinuation to the union of these regions, given by(2.15) R = f(s; w)jRe(w) > maxf2� 2Re(s); 199 �Re(s); 299 � Re(s)2 ; 2918 �Re(s)g g:We use the two interpretations of the multiple Dirihlet series to exhibit funtional equations as w 7! 1�wand s 7! 1 � s. Translating the region R under these equations will lead to an analyti ontinuation. Byadding in the ontributions at the in�nite plaes, we an state a preise formulation of the funtional equationinherited by the multiple Dirihlet series from the Eisenstein series. De�ne(2.16) �n(w) def= h(2�)�1=2nnw�n2+1ir2 n�1Yi=1 �(w � 12 + in ) jDK jnw�n2+1 ;where DK denotes the disriminant of the �eld K and r2 is the number of pairs of omplex embeddings. Thisset of gamma fators omes diretly from the Fourier analysis and multipliation formula for the gammafuntion. Then �n(w)D(w; I;  2) has a funtional equation as w 7! 1 � w, whih we exploit to obtain thefollowing proposition.Proposition 2.3. In the region R given by (2.15),�n(1�w)Z1(s+w� 1=2; 1�w;�;  1;  2) Yv2Sf(1� qn=2�1�nwv ) =X� �(w; 2; �)�n(w)Z1(s; w;�;  1 2�;  2);



10 BEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINwhere eah �(w; 2; �) is a funtion of w whih is bounded in vertial strips of bounded width. The sum istaken over all haraters � with ondutor dividing C and order dividing n.Now equipped with one funtional equation, we go in searh of a seond. By interhanging the orderof summation, deomposing the sums in (2.4) and (2.5) aording to primes dividing J , we will view ourDirihlet series as weighted sums of L-series in s assoiated to �. Thus our series inherit funtional equationsas s 7! 1 � s. To make this preise, we must �rst inlude the appropriate Gamma fators whih ompletethe L-series. De�ne �K(s) by(2.17) �K(s) = � jDK j(2�)r2 �s �(s+ i�)r2�(s� i�)r2 ;where again DK is the disriminant of K, r2 denotes the number of pairs of omplex embeddings in ourtotally omplex �eld K, and 14 + �2 is the eigenvalue orresponding to the automorphi representation �.Proposition 2.4. In the region R,(2.18) Yv2Sf �1� �v 1(Pnv )qn�nsv ��1� �v 1(Pnv )qn�nsv ��K(s)�S(nw + 2ns� 3n2 + 1)Z1(s; w; �;  1;  2)= X�2R̂C B(s; 1; �)�K(1� s)�S(nw � n2 + 1)Z2(1� s; w + 2s� 1;�;  1;  2 21�)where the funtions B(s; 1; �) are bounded in vertial strips of bounded width.The proofs for these two propositions are ompleted in Setion 4. Beause we will apply both funtionalequations to our multiple Dirihlet series in order to obtain an analyti ontinuation, we would like tode�ne �-fators at the in�nite plaes whih are invariant under both funtional equations as s 7! 1� s andw 7! 1� w. Thus, aording to the previous propositions, we de�ne(2.19) �(s; w) = �K(s)�K(s+ w � 1=2)�n(w)�n(w + 2s� 1);and de�ne(2.20) Z�i (s; w;�;  1;  2) = �(s; w)�S(nw + 2ns� 3n2 + 1)Zi(s; w;�;  1;  2) for i = 1; 2:The pair of funtional equations from Propositions 2.3 and 2.4, repeatedly applied to the regionR, providean analyti ontinuation to all of C 2 . This is demonstrated in Setion 5. We will show in Setion 6 that,when speialized to s = 1=2, the resulting expression is absolutely onvergent for w in some right half-plane.



NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONS 11The funtional equation together with this onvergene will allow us to show in Setion 7 that if there is asingle nonvanishing twist at s = 12 , there must in fat be in�nitely many nonvanishing twists at s = 12 .3. Interhanging the Order of Summation { A Proof of Proposition 2.2Proof of Proposition 2.2: We give the proof for (2.13), noting that the proof of (2.14) follows identially.First, we onsider the expression for Z1(s; w;�;  1;  2) given in (2.4). Using the bound ja(I)j �� (NI)1=9+�for the Fourier oeÆients, as well as the fat that jG(I; J)j � (NJ)1=2 , we see that eZ1(s; w;�;  1;  2)onverges absolutely and uniformly in the region of C 2 satisfying Re(w) > 3=2 and Re(s) > 109 . Thus theinterhange of summation is allowed in this smaller region. Then, using the bound given in (2.8), we seethat in fat the series de�ning eZ1(s; w;�;  1;  2) onverges to an analyti funtion in the region Re(s) > 109and Re(w) > 1:Fix an ideal J in I(S) and deompose it aording to J = J0Jnn where J0 = J1J22 : : : Jn�1n�1 again denotesthe nth power free part of J . Let v 62 S be a plae suh that ordv(J) = n, so that we may write J = Pnv J 0with (J 0; Pv) = 1. We must analyze the resulting objet G(I; J).Writing I = P �v I 0 with (I 0; Pv) = 1, givesXI2I(S) a(I) 1(I) 2(J)G(I; J)�J0(eI)"(J0)(NI)s (NJ)w = XI0ordv(I0)=0 a(I 0) 1(I 0) 2(J)G(I 0; J 0)�J0(eI 0)"(J0)(NI 0 )s(NJ 0 )w �X��0 a(P �v ) 1(P �v )G(P �v ; Pnv )�J0(P �v )(NPv )�s+nw :We �rst evaluate the sum over �. If  = 0, the sum beomesX��0 a(P �v ) 1(P �v )�J0(P �v )(NPv )�s = L(v)(s; � 
 �J0 1);where L(v)(s; � 
 �J0 1) denotes the Euler fator assoiated to the plae v in the L-series.If  � 1, then using (2.3) we obtainX��0 a(P �v ) 1(P �v )G(P �v ; Pnv )�J0(P �v )q�s+nwv = �a(Pn�1v ) 1(Pn�1v )�J0(Pn�1v )qnw+(n�1)s�n2 +1v+ 1qnw�n2 +1v X��n (qv � 1)a(P �v ) 1(P �v )�J0(P �v )q�sv :(3.1)



12 BEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINWe wish to sum this geometri series, pulling out a fator of L(v)(s; � 
 �J0 1). We must therefore writethe Fourier oeÆients a(P �v ) in terms of the vth Satake parameters. (Reall that for v 62 S, �v�v = 1 and�v + �v = a(Pv).) We have a(P �v ) = ��+1v � ��+1v�v � �v ;and L(v)(s; � 
 �J0 1) = �1� �v�J0(Pv) 1(Pv)qsv ��1�1� �v�J0(Pv) 1(Pv)qsv ��1= (1� a(Pv)�J0(Pv) 1(Pv)q�sv + �J0(Pv)2 1(Pv)2q�2sv )�1:Substituting these de�nitions into the latter sum of (3.1) and evaluating the geometri sums, we haveX��n a(P �v ) 1(P �v )�J0(P �v )q�sv = 1�v � �v 24X��n ��+1v �J0(P �v ) 1(P �v )q�sv � X��n ��+1v �J0(P �v ) 1(P �v )q�sv 35= 1�v � �v ��n+1vqnsv (1� �v�J0(Pv) 1(Pv)q�sv )�1 � �n+1vqnsv (1� �v�J0(Pv) 1(Pv)q�sv )�1�= L(v)(s; �; �J0 1)qnsv �a(Pnv )� a(Pn�1v )�J0(Pv) 1(Pv)q�sv �:Therefore, we may rewrite the entire equation (3.1) asX��0 a(P �v ) 1(P �v )G(P �v ; Pnv )�J0(P �v )q�s+nwv = 1qnw+ns�n2 +1v ��a(Pn�1v ) 1(Pv)�J0(Pv) qsv+(qv � 1) �a(Pnv )� a(Pn�1v ) 1(Pv)�J0(Pv)q�sv �L(v)(s; � 
 �J0 1)i= L(v)(s; � 
 �J0 1)qnw+ns�n2 +1v � ��a(Pn�1v ) 1(Pv)�J0(Pv) qsv �1� a(Pv)�J0(Pv) 1(Pv)q�sv+�J0(Pv)2 1(Pv)2q�2sv �+ (qv � 1) �a(Pnv )� a(Pn�1v ) 1(Pv)�J0(Pv)q�sv )�� :Expanding in the seond braket, and using the relationa(Pn�1v )a(Pv) = (�v � �v)�1(�nv � �nv )(�v + �v) = a(Pnv ) + a(Pn�2v );we �nd that the above expression equalsL(v)(s; � 
 �J0 1)qnw+ns�n2 +1v �qva(Pnv )� a(Pn�1v )�J0(Pv) 1(Pv)q1�sv �a(Pn�1v )�J0(Pv) 1(Pv)qsv + a(Pn�2v )� :



NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONS 13Putting it all together, we haveX��0 a(P �v ) 1(P �v )G(P �v ; Pnv )�J0(P �v )q�s+nwv == L(v)(s; � 
 �J0 1)qnwv ha(Pnv )q n2 �nsv � a(Pn�1v )�J0(Pv) 1(Pv)q n2 �(n+1)sv �a(Pn�1v )�J0(Pv) 1(Pv)q n2 �1�(n�1)sv + a(Pn�2v )q n2 �1�nsv i:Reall the onvention that a(x) = 0 for all non-integral x. Then repeating the above proess for all suhplaes v with Pv not dividing J0, for any �xed ideal J we have(3.2) XI a(I) 1(I) 2(J)G(I; J)�J0(eI)"(J0)(NI)s (NJ)w= Yvordv(J)=n L(v)(s; � 
 �J0 1)qnwv Q(s; Pnv ; �J0 1;�) XIIjJ10 a(I) 1(I) 2(J)G(I; J)�J0(eI)"(J0)(NI)s (NJ0 )w ;where Q(s; Pnv ; �J0 1;�) is as de�ned in (2.12).We must now repeat this analysis for the remaining sum over I suh that I jJ10 . Let v be a plae suhthat PvjJ0. That is, ordv(J) = n + k, for some k 2 f1; 2; : : : n� 1g and denote ordv(I) = �. Then, writingI = P �v I 0 and J = Pn+kv J 0, we haveG(I; J) = G(P �v I 0; Pn+kv J 0) = (q n+k�12v G(I 0; J 0); if � = n + k � 10; otherwise.Moreover, in this ase fPv = (1) sine Pv jJ0, so �J0(fPv) = 1 Thus we may write(3.3) XIIjJ10 a(I) 1(I) 2(J)G(I; J)"(J0)(NI)s (NJ)w = a(Pn+k�1v ) 1(Pn+k�1v )q(n+k�1)s+(n+k)w�n+k�12v ! X(I0;Pv)=1I0jJ10 a(I 0) 1(I 0) 2(J)G(I 0; J 0)�J0(eI 0)"(J0)(NI 0 )s(NJ 0 )w :Repeating this for the remaining �nite list of plaes v suh that Pv jJ0, we have(3.4) XIIjJ10 a(I) 1(I) 2(J)G(I; J)"(J0)(NI)s (NJ)w = "(J0) 2(J) n�1Yk=1 Yvordv(J)=n+k a(Pn+k�1v ) 1(Pn+k�1v )q(n+k�1)s+(n+k)w�n+k�12v ! :



14 BEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINCombining this result with the information from (3.2) and (2.12) and noting that our haraters  i haveorder n, the original series for �xed J takes form(3.5) XI2I(S) a(I) 1(I) 2(J)G(I; J)�J0(eI)"(J0)(NI)s (NJ)w = "(J0) 2(J)LS(s; � 
 �J0 1) �Yvordv(J)=n Q(s; Pnv ; �J0 1;�)qnwv n�1Yk=1 Yvordv(J)=n+k a(Pn+k�1v ) 1(P k�1v )q(n+k�1)s+(n+k)w�n+k�12v ! :Summing over eah ideal J 2 I(S), the result follows.We will also need the following lemma.Lemma 3.1. Let the notation be as above. The orretion fator Q(s; J ;�; �J0 1) satis�es the followingfuntional equation in s:(3.6) Q(s; J ;�; �J0 1) = (NJ2J23 � � � Jn�2n�1Jnn )1�2s 2(J2J23 � � � Jn�2n�1Jnn )Q(1� s; J ;�; �J0 1):Proof: From the de�nition made in (2.12), one readily sees that at eah prime ideal Pv with (Pv ; J0) = 1,Q(s; Pnv ; �J0 1;�) = (qnv )1�2sQ(1� s; Pnv ; �J0 1;�):Moreover, for eah of the prime ideals Pv with Pv jJ0 for any hoie of k, we have the identity a(Pn+k�1v ) 1(P k�1v )q(n+k�1)s�n+k�12v ! = (qn+k�1v )1�2s 21(P k�1v ) a(Pn+k�1v ) 1(P k�1v )q(n+k�1)(1�s)�n+k�12v ! :The lemma therefore follows by ombining the above identities.4. A Funtional Equations: A Proof of Propositions 2.3 and 2.4Proof of Proposition 2.3: This follows as an immediate orollary of the funtional equation as w 7! 1�w for�n(w)D(w; I;  2) given as Corollary II.2.4 of [11℄. Note the neessity of twisting by haraters  1 and  2so that as the funtional equation takes Eisenstein series to a linear ombination of Eisenstein series at eahusp, the form of our basi Dirihlet series remains the same. Our �(w; �) is then essentially a satteringmatrix for this funtional equation.Reall from Proposition 2.2 that we haveZ1(s; w; �; 1;  2) = �S(nw � n=2 + 1) XJ2I(S) "(J0) 2(J)LS(s; � 
 �J0 1)(NJ)w Q(s; J ;�; �J0 1);



NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONS 15and Z2(s; w; �; 1;  2) = �S(nw � n=2 + 1) XJ2I(S) "(J0) 2(J)LS(s; � 
 �J0 1)(NJ)w Q(s; J ;�; �J0 1);where Q(s; J ;�; �J0 1) is the orretion polynomial de�ned in (2.11). To failitate the statement of theresults of this setion, we extend the de�nitions of Z1 and Z2 to inlude arbitrary linear ombinations ofharaters in plae of  1 and  2: In partiular for E 2 E , let ÆE be the harateristi funtion of the lassE; and onsider(4.1) Z1(s; w;�;  1; ÆE 2) = �S(nw � n=2 + 1) XJ2I(S)J�E "(1=2; J0) 2(J)LS(s; � 
 �J 1)(NJ)w ;where for notational onveniene, we put(4.2) L(s; � 
 �J 1) = L(s; � 
 �J0 1)Q(s; J ;�; �J0 1):We determine the funtional equation for this ompleted L-funtion in the following lemma.Fix an ideal J in I(S). Let J0 = J1J22 : : : Jn�1n�1 denote its nth power free part, and write J0 = I0E,where E represents the lass of J0 in RC , and where I0 � 1 mod C. The ondutor of �J0 is given byfJ0 = J1J2 � � � Jn�1CE , where CE is a onstant depending only on the lass E.Lemma 4.1. With the notation as above,(4.3) L(s; � 
 �J 1) = "( 12 ; �I0)2 "(s; � 
 �E 1) 21 �JCEfE ��NJCENfE �1�2s L(1� s; � 
 �J 1):Proof: From (2.1), we have L(s; �
�J0 1) = "(s; �
�J0 1)L(1� s; �
�J0 1): We will evaluate the fator"(s; � 
 �J0 1) = "(s; (� 
  1)
 �J0) using Proposition 2.1. The entral harater of � is trivial, thereforethe entral harater of � 
  1 is  21 . Thus we have(4.4) "(s; � 
 �J0 1) = "( 12 ; �I0)2  21 �J1 � � � Jn�1CEfE ��NJ1 � � �Jn�1CENfE �1�2s "(s; � 
  1�E)The lemma then follows by ombining the above with the funtional equation for Q(s; J ;�; �J0 1) given inLemma 3.1.We are now ready to demonstrate the funtional equation for Z1 as s 7! 1� s. The funtional equationin Z2 an be shown ompletely analogously.



16 BEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINProof of Proposition 2.4: Using Lemma 4.1, together with the fat that"(12 ; �I0)2 "(12 ; �J0) = "(12 ; �J0) "(12 ; �E)2;we see that(4.5) Z1(s; w;�;  1; ÆE 2)= A(E; s) XJ2I(S)J�E "(1=2; J0) 2 21(J)LS(1� s; � 
 �J0 1)(NJ)w+2s�1 Yv2S L(v)(1� s; � 
 �J0 1)L(v)(s; � 
 �J0 1) ;where A(E; s) = �NCENfE �1�2s  21 �CEfE � "(1=2; �E)2"(s; � 
  1�E):Reall that the L-series in the numerator is the ompleted L-series (see (4.2)).To proeed further, multiply both sides of (4.5) by Yv2Sf 1L(v)(n� ns; � 
  n1 ) : ThenL(v)(1� s; � 
 �J0 1)L(v)(n� ns; � 
  n1 ) = "1 + �v�J0 1(Pv)q1�sv + � � �+ �n�1v �J0 1(Pn�1v )q(n�1)(1�s)v #� "1 + �v�J0 1(Pv)q1�sv + � � �+ �n�1v �J0 1(Pn�1v )q(n�1)(1�s)v # :Hene for eah J and eah v 2 Sf the termL(v)(1� s; � 
 �J0 1)L(v)(n� ns; � 
  n1 ) 1L(v)(s; � 
 �J0 1)beomes a �nite Laurent polynomial in qsv whose dependene on J is through terms of the form �J0(Pv):Sine v 2 Sf and J is in a �xed lass E of RC ; we have �J0(Pv) = �v(E) for some harater �v of RC :Similarly, the quotient(4.6) Yv2S1 L(v)(1� s; � 
 �J0 1)L(v)(s; � 
 �J0 1) = �K(1� s)�K(s) ;where �K(s) is de�ned as in (2.17), is independent of J:Sine Z�1 (s; w;�;  1;  2) = �(s; w)�S(nw + 2ns� 3n2 + 1)Z1(s; w;�;  1;  2);



NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONS 17where we reall that �(s; w) is the omplete set of Gamma fators de�ned in (2.19), we onlude thatYv2Sf �1� �v 1(Pnv )qn�nsv ��1� �v 1(Pnv )qn�nsv �Z�1 (s; w; �;  1;  2ÆE) =A(s; 1; E)Z�2 (1� s; w + 2s� 1;�;  1;  2 21ÆE):Moreover, the funtions A(s; 1; E) are �nite Laurent polynomials in NJs . Summing over E ;Z�1 (s; w; �;  1;  2) = XE2E Z�1 (s; w; �;  1;  2ÆE)so that(4.7) Yv2Sf �1� �v 1(Pnv )qn�nsv ��1� �v 1(Pnv )qn�nsv �Z�1 (s; w; �;  1;  2)= X�2R̂C B(s; 1; �)Z�2 (1� s; w + 2s� 1;�;  1;  2 21�);where B(s; 1; �) is a linear ombination of the A(s; 1; E). This is preisely Proposition 2.4.5. Analyti ContinuationWe wish to analytially ontinue the funtions eZi(s; w;�;  1;  2) for i = 1; 2 to C 2 , for eah hoie of  1and  2. This will be ahieved using the funtional equations for the Z�i , along with properties of the seriesD(w; I;  2) and the Dirihlet series L(s; � 
 �d 1). As above, we will restrit our attention to eZ1, as thearguments for eZ2 will be almost idential.First, we onsider the expression for Z1(s; w;�;  1;  2) given in (2.4). Reall that the bound ja(I)j ��(NI)1=9+� for the Fourier oeÆients, as well as the fat that jG(I; J)j � (NJ)1=2 , implies that eZ1(s; w;�;  1;  2)onverges absolutely and uniformly in the region of C 2 satisfying Re(w) > 3=2 and Re(s) > 109 . Then, asmentioned earlier, by the bound given in (2.8), the series de�ning eZ1(s; w;�;  1;  2) onverges to an analytifuntion in the region Re(s) > 109 and Re(w) > 1:Next, we examine the behavior of eZ1(s; w;�;  1;  2) when Re(s) � �1=9, utilizing the expression forZ1(s; w;�;  1;  2) given in (2.13). It will be onvenient to work with this series asZ1(s; w;�;  1;  2) = XE2RC Z1(s; w;�;  1; ÆE 2);



18 BEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINwith Z1(s; w;�;  1; ÆE 2) as given in (4.1). The full Dirihlet series L(s; � 
 �J 1) satis�es the funtionalequation given in (4.3). This funtional equation involves gamma fators, as we have(5.1) L(s; � 
 �J0 1) =Yv L(v)(s; � 
 �J0 1) = �K(s)A(s)LS(s; � 
 �J0 1);where A(s) =Qv2Sf L(v)(s; � 
 �J0 1). Combining (5.1) with (4.3), we obtain(5.2) LS(s; � 
 �J 1) = �K(1� s)�K(s) A(1� s)A(s) B(s; E)(NJ)1�2sLS(1� s; � 
 �J 1);where we put B(s; E) = "( 12 ; �I0)2"(s; � 
 �E 1) 21 �JCEfE ��NCENfE �1�2s :We set s = �1=9+�+ it in (5.2) and examine the fators on the right, as jtj ! 1. For the Gamma fators,using a simpli�ed version of Stirling's formula given byj�(� + it)j � jtj��1=2exp(��jtj) as jtj ! 1;we see that, as jtj ! 1, ���� �K(10=9� � � it)�K(�1=9 + � + it) ���� �M jtj(22=9�4�)r2for some positive onstant M . The fator ��� A( 109 ���it)A(�19 +�+it) ��� is a �nite polynomial in powers of q�v , hene it isindependent of t. Finally, the fator LS( 109 � � � it; � 
 �J 1) is bounded as a funtion of t, sine, byRankin-Selberg theory, the full L-series is absolutely onvergent when s = 109 . Thus we see that LS(�1=9+� + it; � 
 �J 1) has polynomial growth as a funtion of t, for �xed � < 0.For Re(s) � �1=9, we therefore have(5.3) jZ1(s; w;�;  1;  2)j �� (�)jtj(22=9�4�)r2 XE2RC XJ2I(S)J�E 1(NJ)Re(w)+2��11=9�� ;where (�) is a onstant independent of t, given by (�) = maxE2RCf(�;E)g; with(�;E) = ���� A( 109 � � � it)A(�19 + � + it) ���� � ��B(�19 + � + it)�� �M:Now, the series on the right-hand side of (5.3) onverges absolutely and uniformly on ompata in the regionsatisfying Re(s) < �1=9 and Re(w) > 2� 2 Re(s). Now by applying a generalized version of the Phragm�en-Lindel�of Theorem, we see that for s with real part between �1=9 and 10=9, eZ1 extends to a omplex analytifuntion, provided Re(w) > 19=9� Re(s). Therefore, our region of analytiity for eZ1(s; w;�;  1;  2) is theregion R00 = f(s; w)jRe(w) > maxf1; 199 �Re(s); 2� 2Re(s)g g:



NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONS 19To obtain a seond region of analytiity for eZ1, we again onsider the expression for Z1 in terms ofD(w; I;  2), as given in (2.6). If Re(w) < 0, then (2.8) givesj(w � 12 + 1n )(w � 12 � 1n )D(w; I;  2)j �� (NI)1=2�Re(w)+�;hene we see thatj eZ1(s; w;�;  1;  2)j �� XI2I(S) (NI)1=9+� (NI)1=2�Re(w)(NI)s = XI2I(S) 1(NI)s+Re(w)�11=18�� :The implied onstant has a dependene on w with the bound uniform for w in ompata. Consequently,the initial region of onvergene of eZ1(s; w;�;  1;  2), i.e. Re(w) > 1 and Re(s) > 109 , is extended toinlude the region of C 2 satisfying Re(w) < 0 and Re(s) > 29=18�Re(w). Then by a seond appliationof the Phragm�en-Lindel�of theorem, we see that analytiity of eZ1(s; w;�;  1;  2) extends to the region R0 =f(s; w)jRe(s) > maxf 109 ; 2918 � Re(w)2 ; 2918 �Re(w)g g:These regions overlap, whih means that eZ1(s; w;�;  1;  2) an be analytially ontinued on their union,R = R0 [R00. By an almost idential argument, eZ2(s; w;�;  1;  2) also is analyti on the region R. Now wemay apply the funtional equations for the Zi, represented for onveniene as � : (s; w)! (1� s; w+2s� 1)and � : (s; w) ! (s + w � 1=2; 1� w), to extend this region of analytiity. Applying the transformation �to the region R, we obtain a region whih overlaps R, and when we take the onvex hull of their union, weobtain the half-plane f(s; w)jRe(s) > 2918 �Re(w)g:Finally, applying the transformation � to this half-plane, we obtain another half-plane whih overlaps it.Therefore when we take the onvex hull of their union, we obtain all of C 2 , as desired.6. Absolute Convergene of Sums in a Right Half-PlaneWe �rst analyze the individual expressions Zi( 12 ; w;�;  1;  2) for i = 1; 2. Again, we will restrit ourattention to Z1 in what follows, as the onvergene of Z2 will evidently follow in the same fashion. To begin,we separate the sum over J in terms of two piees { the �rst orresponding to nth power free J0, and theseond orresponding to Jn. From (2.13), we haveZ1�12 ; w;�;  1;  2� = XJ02I(S)nth-power free "(J0) 2(J0)LS( 12 ; �; �J0 1)(NJ0 )w XJn2I(S) Q( 12 ; J ;�; �J0 1)(NJn )nw :



20 BEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINIn the expression for Q( 12 ; J ;�; �J0 1) obtained from (2.11), we abbreviate the notation by de�ning(6.1) CJ0; 1(Pv) = �J0(Pv) 1(Pv) + �J0(Pv) 1(Pv);and writing Q�12 ; Pnv ; �J0 1;�� = a(Pnv )� a(Pn�1v )q� 12v CJ0; 1(Pv) + a(Pn�2v )q�1v :For �xed J0, we show that the sum over Jn is absolutely onvergent in a ertain right half-plane in w. Wemay writeXJn2I(S) Q( 12 ; J ;�; �J0 1)(NJn )nw= n�1Yk=1 Yvordv(J)=n+k0�X�0 a(Pn+k�1v ) 1(P k�1v )(NPv )nw 1A Yvordv(J)=n0�X�0 Q( 12 ; Pnv ; J ;�)(NPv )nw 1Aand then analyze eah of the geometri sums individually, using the Satake parameters. First, we haveX�0 a(Pn+k�1v ) 1(P k�1v )(NPv )nw =  1(P k�1v )�v � �v X�0 �n+kv � �n+kvqnwv=  1(P k�1v )�v � �v h�kv(1� �nv q�nwv )�1 � �kv (1� �nv q�nwv )�1i=  1(P k�1v )(1� �nv q�nwv )�1(1� �nv q�nwv )�1 �a(P k�1v ) + a(Pn�k�1v )q�nwv � :Notie that we have two of the fators in the Euler fator orresponding to the non-arhimedean plaes v inthe symmetri nth power L-funtion. Namely, for eah suh plae v, we have the j = 0 and j = n fators inthe expression(6.2) L(v)(nw; �; symn) = Y0�j�n(1� �n�jv �jvq�nwv )�1:Next, we haveX�0 Q( 12 ; Pnv ; �J0 1;�)(NPv )nw = 1 +X�1 a(Pnv )� a(Pn�1v )q� 12v CJ0; 1(Pv) + a(Pn�2v )q�1vqnwv= 1 + 1�v � �v "��v � q� 12v CJ0; 1(Pv) + (�vqv)�1� �nvqnwv (1� �nv q�nwv )�1� ��v � q� 12v CJ0; 1(Pv) + (�vqv)�1� �nvqnwv (1� �nv q�nwv )�1#:



NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONS 21After fatoring out (1� �nv q�nwv )�1(1� �nv q�nwv )�1 from the entire expression and simplifying, we obtainX�0 Q( 12 ; Pnv ; �J0 1;�)(NPv )nw= (1� �nv q�nwv )�1(1� �nv q�nwv )�1 "1 + a(Pn�2v )qnwv � a(Pn�1v )CJ0; 1(Pv)qnw+1=2v + a(Pn�2v )qnw+1v + 1q2nw+1v #:Therefore the sum over Jn 2 I(S) beomes(6.3) XJn2I(S) Q( 12 ; J ;�; �J0 1)(NJn )nw =Yv (1� �nv q�nwv )�1(1� �nv q�nwv )�1 n�1Yk=1 Yvordv(J)�k (n) 1(P k�1v ) �a(P k�1v ) + a(Pn�k�1v )q�nwv �� Yvordv(J)�0 (n)"1 + a(Pn�2v )qnwv � a(Pn�1v )CJ0; 1(Pv)qnw+1=2v + a(Pn�2v )qnw+1v + 1q2nw+1v #:In order to express this sum in terms of L(nw; �; symn), we multiply through by the remaining fators in(6.2) and their reiproals. If we putRv(n;w;�) = Y1�j�n�1(1� �n�jv �jvq�nwv )= ((1� �n�2v q�nwv ) � � � (1� �vq�nwv )(1� �vq�nwv ) � � � (1� �n�2v q�nwv ) if n is odd;(1� �n�2v q�nwv ) � � � (1� �vq�nwv )(1� q�nwv )(1� �vq�nwv ) � � � (1� �n�2v q�nwv ) if n is even;then we have XJn2I(S) Q( 12 ; J ;�; �J0 1)(NJn )nw = LS(nw; �; symn)RJ0(w;�);whereRJ0(w;�) = n�1Yk=1 Yvordv(J0)=kRv(n;w;�) 1(P k�1v ) �a(P k�1v ) + a(Pn�k�1v )q�nwv �� Yvordv(J0)=0Rv(n;w;�)"1 + a(Pn�2v )qnwv � a(Pn�1v )CJ0; 1(Pv)qnw+1=2v + a(Pn�2v )qnw+1v + 1q2nw+1v #:The fator L(nw; �; symn) onverges absolutely for Re(w) > 1n + 19 . In the fator RJ0(w;�); the produtover plaes v with Pv j J0 is a �nite produt, and therefore it does not a�et onvergene. In the in�niteprodut over plaes v with Pv - J0, for a given plae v, it is lear that the termsa(Pn�2v )qnwv and a(Pn�1v )CJ0; 1(Pv)qnw+1=2v



22 BEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINdetermine the region of onvergene. Using the fat thata(Pv)�� q1=9+�v ;([12℄) we see that the �rst of these two terms is in fat more restritive. We �nd that this in�nite produt,and hene RJ0(w;�); onverges absolutely for Re(w) > 79n + 19 . Now suppose there are only �nitely manytwists for whih LS( 12 ; �; �J0 1) is nonzero. ThenLS(nw; �; symn) XJ02I(S)nth-power free "(J0) 2(J0)LS( 12 ; �; �J0 1)(NJ0 )w RJ0(w;�);will onverge absolutely for Re(w) > 1n+ 19 . (Note that sine we are restriting our attention to the ase n � 3,this would mean that there exists some Æ > 0 suh that the sum onverges absolutely for Re(w) > 12 � Æ.)7. Nonvanishing twists (Proof of Theorem 1.1)We now use the results of the previous setions to prove Theorem 1.1. We require the following lemma.Lemma 7.1. Suppose the Dirihlet series L(w) =X b(d)dwis absolutely onvergent for Re(w) > 1=2�Æ; for some positive Æ: Suppose further that there exist Dirihlet se-ries M1(w);M2(w); : : : ;Mr(w) and funtions 1(w); 2(w); : : : ; r(w) whih satisfy the following onditions:(1) Eah Mj(w) is absolutely onvergent for Re(w) > 1=2� Æ:(2) Eah j(w) is holomorphi for Re(w) > 0; and for all k > 0; � > 1=2 we have the estimatej(� + it) <<k;� jtj�k; as jtj ! 1:(3) There is the funtional equationL(w) =Xj j(w)Mj(1� w):Then L(w) is identially zero.To apply the Lemma, we set s = 12 and view the funtions Zi(s; w;�;  1;  2) for i = 1; 2 as Dirihletseries in w: In partiular, after repeated appliations of the funtional equations, the Dirihlet series L(w) =



NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONS 23Z1( 12 ; w;�; 1; 1) satis�es the funtional equationL(w) = X�1;�22bR �1;�2(w)Z2(1=2; 1� w;�; �1; �2)for some olletion of funtions �1;�2 satisfying ondition 2 of Lemma 7.1. (To see this, apply the w-funtionalequation, followed by the s-funtional equation, followed by the w-funtional equation to Z1(s; w;�; 1; 1) ats = 12 :) If there are only �nitely many id�ele lass haraters �J0 of order n suh that L(1=2; � 
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