A New Approach to Permutation Polynomials over Finite Fields

Neranga Fernando
Joint work with Dr. Xiang-dong Hou and Stephen Lappano

Department of Mathematics and Statistics
University of South Florida
Discrete Seminar
November 19, 2012

Permutation polynomials

Let \mathbb{F}_{q} be the finite field with q elements.

Definition

A polynomial $f(x) \in \mathbb{F}_{q}[\mathrm{x}]$ is called a permutation polynomial (PP) over finite field \mathbb{F}_{q} if the mapping $x \mapsto f(x)$ is a permutation of \mathbb{F}_{q}.

Facts

- Every linear polynomial over \mathbb{F}_{q} is a permutation polynomial of \mathbb{F}_{q}.
- The monomial x^{n} is a permutation polynomial of \mathbb{F}_{q} if and only if $\operatorname{gcd}(n, q-1)=1$.

Dickson polynomial

Let $n \geq 0$ be an integer.
Elementary symmetric polynomials $x_{1}+x_{2}$ and $x_{1} x_{2}$ form a \mathbb{Z}-basis of the ring of symmetric polynomials in $\mathbb{Z}\left[x_{1}, x_{2}\right]$.

There exists $D_{n}(x, y) \in \mathbb{Z}[x, y]$ such that

$$
\begin{gathered}
x_{1}^{n}+x_{2}^{n}=D_{n}\left(x_{1}+x_{2}, x_{1} x_{2}\right) \\
D_{n}(x, y)=\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{n}{n-i}\binom{n-i}{i}(-y)^{i} x^{n-2 i}
\end{gathered}
$$

Dickson polynomial

$D_{0}(x, y)=2$,
$D_{1}(x, y)=x$,
$D_{n}(x, y)=x D_{n-1}(x, y)-y D_{n-2}(x, y), \quad n \geq 2$.
[Dickson 1897]
For fixed $a \in \mathbb{F}_{q}, D_{n}(x, a) \in \mathbb{F}_{q}[\mathrm{x}]$ is the Dickson polynomial of degree n and parameter a.

When $a=0, D_{n}(x, a)=x^{n}$, PP if and only if $(n, q-1)=1$.
When $0 \neq a \in \mathbb{F}_{q}$, PP if and only if $\left(n, q^{2}-1\right)=1$.

Reversed Dickson polynomial

[Hou, Mullen, Sellers, Yucas 2009]
Fix $a \in \mathbb{F}_{q}$. Interchanged the roles of x and a.
$D_{n}(a, x) \in \mathbb{F}_{q}[\mathrm{x}]$ - reversed Dickson polynomial.
When $a=0, D_{n}(0, x)$ is a PP if and only if $n=2 k$ with $(k, q-1)=1$.
When $a \neq 0$,

$$
D_{n}(a, x)=a^{n} D_{n}\left(1, \frac{x}{a^{2}}\right)
$$

$D_{n}(a, x)$ is a PP on \mathbb{F}_{q} if and only if $D_{n}(1, x)$ is a PP on \mathbb{F}_{q}.
The nth Reversed Dickson Polynomial $D_{n}(1, x) \in \mathbb{Z}[x]$ is defined by

$$
D_{n}(1, x(1-x))=x^{n}+(1-x)^{n}
$$

Polynomial $g_{n, q}$

$$
q=p^{k}, n \geq 0 .
$$

There exists a unique polynomial $g_{n, q} \in \mathbb{F}_{p}[x]$ such that

$$
\sum_{a \in \mathbb{F}_{q}}(x+a)^{n}=g_{n, q}\left(x^{q}-x\right)
$$

Question: When is $g_{n, q}$ a permutation polynomial(PP) of $\mathbb{F}_{q^{e}}$?
If $g_{n, q}$ is a PP, we call triple ($n, e ; q$) desirable.

Outline

- Basic properties of the polynomial $g_{n, q}$
- The Case $e=1$
- The Case $n=q^{a}-q^{b}-1,0<b<a<p e$.
- Results with even q

Polynomial $g_{n, q}$

$$
g_{n, q}(x)=\sum_{\frac{n}{q} \leq 1 \leq \frac{n}{q-1}} \frac{n}{l}\binom{1}{n-I(q-1)} x^{n-l(q-1)}
$$

The Polynomial $g_{n, q}$

Recurrence

$$
\begin{aligned}
& g_{0, q}=\ldots=g_{q-2, q}=0 \\
& g_{q-1, q}=-1
\end{aligned}
$$

$$
g_{n, q}=x g_{n-q, q}+g_{n-q+1, q}, \quad n \geq q
$$

When $n<0$

Recurrence relation for $n \geq 0$ can be used to define $g_{n, q}$ for $n<0$:

$$
g_{n, q}=\frac{1}{x}\left(g_{n+q, q}-g_{n+1, q}\right) .
$$

For $n<0$, there exists a $g_{n, q} \in \mathbb{F}_{p}\left[x, x^{-1}\right]$ such that

$$
\sum_{a \in \mathbb{F}_{q}}(x+a)^{n}=g_{n, q}\left(x^{q}-x\right)
$$

Recurrence relation holds for all $n \in \mathbb{Z}$.

The Polynomial $g_{n, q}$

The nth Reversed Dickson Polynomial $D_{n}(1, x) \in \mathbb{Z}[x]$ is defined by

$$
D_{n}(1, x(1-x))=x^{n}+(1-x)^{n}
$$

When $q=2$,

$$
g_{n, 2}(x(1-x))=x^{n}+(1-x)^{n} \quad \in \mathbb{F}_{2}[x]
$$

$g_{n, 2}=D_{n}(1, x) \quad \in \mathbb{F}_{2}[x]$.

Desirable Triples

Equivalence

(1) $g_{p n, q}=g_{n, q}^{p}$.
(2) If $n_{1}, n_{2}>0$ are integers such that $n_{1} \equiv n_{2}\left(\bmod q^{p e}-1\right)$, then $g_{n_{1}, q} \equiv g_{n_{2}, q}\left(\bmod x^{q^{e}}-x\right)$.
(3) If $m, n>0$ belong to the same p-cyclotomic coset modulo $q^{p e}-1$, we say that two triples ($m, e ; q$) and ($n, e ; q$) are equivalent and write $(m, e ; q) \sim(n, e ; q)$.

If $(m, e ; q) \sim(n, e ; q)$,
$g_{m, q}$ is a PP if and only if $g_{n, q}$ is a PP.

Desirable Triples
 Some Necessary Conditions

[Hou 2011]

If $(n, e ; 2)$ is desirable, $\operatorname{gcd}\left(n, 2^{2 e}-1\right)=3$.
If $(n, e ; q)$ is desirable, $\operatorname{gcd}(n, q-1)=1$.

Generating function

A Quick Reminder :

$$
\begin{aligned}
& g_{0, q}=\ldots=g_{q-2, q}=0 \\
& g_{q-1, q}=-1 \\
& \qquad g_{n, q}=\mathrm{x} g_{n-q, q}+g_{n-q+1, q}, n \geq q \\
& \sum_{n \geq 0} g_{n, q} \mathrm{t}^{n}=\frac{-\mathrm{t}^{q-1}}{1-\mathrm{t}^{q-1}-\mathrm{xt}^{q}}
\end{aligned}
$$

Theorem

$$
\sum_{n \geq 0} g_{n, q} \mathrm{t}^{n} \equiv \frac{-(\mathrm{xt})^{q-1}}{1-(\mathrm{xt})^{q-1}-(\mathrm{xt})^{q}}+\left(1-\mathrm{x}^{q-1}\right) \frac{-\mathrm{t}^{q-1}}{1-\mathrm{t}^{q-1}} \quad\left(\bmod \mathrm{x}^{q}-\mathrm{x}\right) .
$$

Namely, modulo $x^{q}-\mathrm{x}$,

$$
g_{n, q}(\mathrm{x}) \equiv a_{n} \mathrm{x}^{n}+ \begin{cases}\mathrm{x}^{q-1}-1 & \text { if } n>0, n \equiv 0 \quad(\bmod q-1), \\ 0 & \text { otherwise },\end{cases}
$$

where $\quad \sum_{n \geq 0} a_{n} t^{n}=\frac{-t^{q-1}}{1-t^{q-1}-t^{q}}$

Proof of the Theorem

$\sum_{n \geq 0} a_{n} t^{n}=\frac{-\mathrm{t}^{q-1}}{1-\mathrm{t}^{q-1}-\mathrm{t}^{q}}$
$\frac{-\mathrm{t}^{q-1}}{1-\mathrm{t}^{q-1}-\mathrm{xt}^{q}} \equiv \frac{-(\mathrm{xt})^{q-1}}{1-(\mathrm{xt})^{q-1}-(\mathrm{xt})^{q}}+\left(1-\mathrm{x}^{q-1}\right) \frac{-\mathrm{t}^{q-1}}{1-\mathrm{t}^{q-1}} \quad\left(\bmod \mathrm{x}^{q-1}-1\right)$
and
$\frac{-\mathrm{t}^{q-1}}{1-\mathrm{t}^{q-1}-\mathrm{xt}^{q}} \equiv \frac{-(\mathrm{xt})^{q-1}}{1-(\mathrm{xt})^{q-1}-(\mathrm{xt})^{q}}+\left(1-\mathrm{x}^{q-1}\right) \frac{-\mathrm{t}^{q-1}}{1-\mathrm{t}^{q-1}} \quad(\bmod \mathrm{x})$

The case e = 1

$(n, 1 ; q)$ is desirable if and only if $\operatorname{gcd}(n, q-1)=1$ and $a_{n} \neq 0$.
Proof.
By the Theorem, we have
Namely, modulo $\mathrm{x}^{q}-\mathrm{x}$,

$$
g_{n, q}(\mathrm{x}) \equiv a_{n} \mathrm{x}^{n}+ \begin{cases}\mathrm{x}^{q-1}-1 & \text { if } n>0, n \equiv 0 \quad(\bmod q-1) \\ 0 & \text { otherwise }\end{cases}
$$

$g_{n, q}(\mathrm{x})=a_{n} \mathrm{x}^{n}$ for all $\mathrm{x} \in \mathbb{F}_{q}^{*}$.
(\Rightarrow)
Since $g_{n, q}$ is PP, by a previous fact, $\operatorname{gcd}(n, q-1)=1$.
So $g_{n, q}(\mathrm{x}) \equiv a_{n} \mathrm{x}^{n}\left(\bmod \mathrm{x}^{q}-\mathrm{x}\right)$ which implies $a_{n} \neq 0$.
(\Leftarrow)
$\operatorname{gcd}(n, q-1)=1$ and $a_{n} \neq 0 \Rightarrow g_{n, q}(\mathrm{x}) \equiv a_{n} \mathrm{x}^{n}\left(\bmod \mathrm{x}^{q}-\mathrm{x}\right) \Rightarrow g_{n, q}$ is PP.

Open question: Determine n s.t. $a_{n} \neq 0$.

The case e = 1 contd

Assume $q=2 .(n, 1 ; 2)$ is desirable if and only if $a_{n}=0\left(\right.$ in $\left.\mathbb{F}_{2}\right)$.
Proof.
By the Theorem, we have
$g_{n, 2} \equiv a_{n} \mathrm{x}+\mathrm{x}-1\left(\bmod \mathrm{x}^{2}-\mathrm{x}\right)$.

The case $n=q^{a}-q^{b}-1,0<b<a<p e$.

$g_{q^{a}-q^{b}-1, q}$

Define $S_{a}=x+x^{q}+\cdots+x^{q^{a-1}}$ for every integer $a \geq 0$.
For $0<b<a<p e$, we have

$$
g_{q^{a}-q^{b}-1, q}=-\frac{1}{\mathrm{x}}-\frac{\left(S_{b}^{q-1}-1\right) S_{a-b}^{q^{b}}}{\mathrm{x}^{q^{b}+1}}
$$

Assume $e \geq 2$. Write

$$
a-b=a_{0}+a_{1} e, \quad b=b_{0}+b_{1} e,
$$

where $a_{0}, a_{1}, b_{0}, b_{1} \in \mathbb{Z}$ and $0 \leq a_{0}, b_{0}<e$. Then we have
Namely modulo $\mathrm{x}^{q^{e}}-\mathrm{x}$,

$$
g_{q^{a}-q^{b}-1, q} \equiv-\mathrm{x}^{q^{e}-2}-\mathrm{x}^{q^{e}-q^{b_{0}}-2}\left(a_{1} S_{e}+S_{a_{0}}^{q_{0}^{b_{0}}}\right)\left(\left(b_{1} S_{e}+S_{b_{0}}\right)^{q-1}-1\right) .
$$

The case $b=0$

If $b=0$ and $a>0$, we have $n \equiv q^{a}-2\left(\bmod q^{p e}-1\right)$.

$$
g_{q^{a}-2, q}=\mathrm{x}^{q-2}+\mathrm{x}^{q^{2}-2}+\cdots+\mathrm{x}^{q^{a-1}-2}
$$

Conjecture 1

Let $e \geq 2$ and $2 \leq a<p e$. Then ($q^{a}-2, e ; q$) is desirable if and only if
(i) $a=3$ and $q=2$, or
(ii) $a=2$ and $\operatorname{gcd}\left(q-2, q^{e}-1\right)=1$.

The case $e \geq 3$

Conjecture 2
Let $e \geq 3$ and $n=q^{a}-q^{b}-1,0<b<a<p e$. Then $(n, e ; q)$ is desirable if and only if
(i) $a=2, b=1$, and $\operatorname{gcd}\left(q-2, q^{e}-1\right)=1$, or
(ii) $a \equiv b \equiv 0(\bmod e)$.

The Case $b=p$

Theorem

Let p be an odd prime and q a power of p.
(i) $\mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ consists of the roots of $\left(\mathrm{x}-\mathrm{x}^{q}\right)^{q-1}+1$.
(ii) Let $0<i \leq \frac{1}{2}(p-1)$ and $n=q^{p+2 i}-q^{p}-1$. Then

$$
g_{n, q}(x)= \begin{cases}(2 i-1) x^{q-2} & \text { if } x \in \mathbb{F}_{q}, \\ \frac{2 i-1}{x}+\frac{2 i}{x^{q}} & \text { if } x \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q} .\end{cases}
$$

(iii) For the n in (ii), $(n, 2 ; q)$ is desirable if and only if $4 i \not \equiv 1(\bmod p)$.

The Case $b=p$

Theorem

Let p be an odd prime and q a power of p.
(i) Let $0<i \leq \frac{1}{2}(p-1)$ and $n=q^{p+2 i-1}-q^{p}-1$. Then

$$
g_{n, q}(x)= \begin{cases}2(i-1) x^{q-2} & \text { if } x \in \mathbb{F}_{q}, \\ \frac{2 i-1}{x}+\frac{2 i-2}{x^{q}} & \text { if } x \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q} .\end{cases}
$$

(ii) For the n in (i), $(n, 2 ; q)$ is desirable if and only if $i>1$ and $4 i \not \equiv 3$ $(\bmod p)$.

Results

Result $1 \quad q=5 \quad 2 \mathrm{x}^{3}+2 \mathrm{x}^{19}$ is a PP of $\mathbb{F}_{q^{2}}$.
Result $2 \quad q=13 \quad 6 x^{11}+6 x^{155}$ is a PP of $\mathbb{F}_{q^{2}}$.
Result $3 \quad q=121 \quad 6 \mathrm{x}^{119}+4 \mathrm{x}^{14519}$ is a PP of $\mathbb{F}_{q^{2}}$.
Result $4 \quad q=11 \quad 8 \mathrm{x}^{9}+2 \mathrm{x}^{109}$ is a PP of $\mathbb{F}_{q^{2}}$.
Result $5 \quad q=29 \quad 7 \mathrm{x}^{27}+21 \mathrm{x}^{811}$ is a PP of $\mathbb{F}_{q^{2}}$.

Conjecture 3

Let $\mathrm{f}=\mathrm{x}^{q-2}+t \mathrm{x}^{q^{2}-q-1}, t \in \mathbb{F}_{q}^{*}$. Then f is a PP of $\mathbb{F}_{q^{2}}$ if and only if one of the following occurs:
(i) $t=1, q \equiv 1(\bmod 4)$;
(ii) $t=-3, q \equiv \pm 1(\bmod 12)$;
(iii) $t=3, q \equiv-1(\bmod 6)$.

Results

Let p be an odd prime and q a power of p.
Result $1 \quad q \equiv 1(\bmod 4)\left(q^{p+5}-q^{9}-1,2 ; q\right)$ is desirable.
Result $2\left(q^{p+3}-q^{5}-1,2 ; q\right)$ is desirable.
Result $3\left(q^{p+4}-q^{7}-1,2 ; q\right)$ is desirable.
Result $4 \quad\left(q^{p+6}-q^{11}-1,2 ; q\right)$ is desirable.

A most recent result

Theorem

Let p be an odd prime, $q=p^{k}, n=q^{p+i+1}-q^{2 i+1}-1$. If

$$
\left(\frac{2 i+1}{q}\right)= \begin{cases}1 & : \text { if } i \text { is odd } \\ (-1)^{\frac{q-1}{2}} & : \text { if } i \text { is even. }\end{cases}
$$

where $\left(\frac{\underline{a}}{b}\right)$ is the Jacobian symbol, then $\left(q^{p+i+1}-q^{2 i+1}-1,2 ; q\right)$ is desirable.

Outline of the proof

$$
e=2, a=p+i+1, b=2 i+1
$$

Case $1-i$ is odd.

$$
\begin{aligned}
& a_{0}=0, a_{1}=\frac{p-i}{2}, b_{0}=1, b_{1}=i \\
& \quad g \equiv-x^{q^{2}-2}+\frac{i}{2} x^{q^{2}-q-2}\left(x+x^{q}\right)\left[\left((i+1) x+i x^{q}\right)^{q-1}-1\right]
\end{aligned}
$$

Clearly, $g(0)=0$. When $x \in \mathbb{F}_{q^{2}}^{*}$,

$$
g(x)=
$$

$$
\frac{i\left((i+1) w^{q}-i w\right)^{2}+i\left((i+1) w^{q}-i w\right)^{2 q}+2(i+1)\left((i+1) w^{q}-i w\right)^{q+1}}{(4 i+2)^{2} w}
$$

Outline of the proof contd

$$
\frac{i\left((i+1) w^{q}-i w\right)^{2}+i\left((i+1) w^{q}-i w\right)^{2 q}+2(i+1)\left((i+1) w^{q}-i w\right)^{q+1}}{w}=c
$$

Assume $c \neq 0$. Let $t=w c \quad \Rightarrow \quad t \in \mathbb{F}_{q}$.

$$
t=\frac{1}{i(u)^{2 q}+2(i+1)(u)^{q+1}+i(u)^{2}},
$$

where $u=(i+1) c^{-q}-i c^{-1}$.
t is unique $\Rightarrow w$ is unique.

Outline of the proof contd

$$
\frac{i\left((i+1) w^{q}-i w\right)^{2}+i\left((i+1) w^{q}-i w\right)^{2 q}+2(i+1)\left((i+1) w^{q}-i w\right)^{q+1}}{w}=c
$$

Now assume $c=0$.

$$
i\left((i+1) w^{q}-i w\right)^{2 q-2}+2(i+1)\left((i+1) w^{q}-i w\right)^{q-1}+i=0
$$

Let $z=\left((i+1) w^{q}-i w\right)^{q-1} \in \mathbb{F}_{q^{2}}^{*}$. Then

$$
\begin{equation*}
i z^{2}+2(i+1) z+i=0 \tag{1}
\end{equation*}
$$

Since i is odd $2 i+1$ is a square in \mathbb{F}_{q}. So (1) implies that $z \in \mathbb{F}_{q}$. Then we have $z^{2}=z^{q+1}=\left((i+1) w^{q}-i w\right)^{q^{2}-1}=1$. So $z= \pm 1$ and it contradicts (1).

Outline of the proof contd

Case 2 - i is even

$$
a_{0}=1, a_{1}=\frac{p-i-1}{2}, b_{0}=1, b_{1}=i
$$

Results with even q.

A Desirable Family

Theorem

Let $q=2^{s}, s>1, e>0$, and let $n=(q-1) q^{0}+\frac{q}{2} q^{e-1}+\frac{q}{2} q^{e}$. We have

$$
g_{n, q}=\mathrm{x}+\operatorname{Tr}_{q^{e} / q}(\mathrm{x})+\mathrm{x}^{\frac{1}{2} q^{e}} \operatorname{Tr}_{q^{e} / q}(\mathrm{x})^{\frac{1}{2} q} .
$$

When e is odd, $g_{n, q}$ is a PP of $\mathbb{F}_{q^{e}}$.

Example

Let $q=4, e>1$ and Let $n=3 q^{0}+2 q^{e-1}+2 q^{e}$. Then

$$
g_{3 q^{0}+2 q^{e-1}+2 q^{e}}=x+\operatorname{Tr}_{q^{e} / q}(x)+x^{2 q^{e-1}} \operatorname{Tr}_{q^{e} / q}^{2}(x)
$$

We claim that when e is odd, $g_{n, q}$ is a PP of $\mathbb{F}_{q^{e}}$. Assume that there exist $x, a \in \mathbb{F}_{q^{e}}$ such that $g(x)=g(x+a)$. Then we have

$$
\begin{aligned}
& a+\operatorname{Tr}_{q^{e} / q}(a)+\operatorname{Tr}_{q^{e} / q}^{2}(x) a^{2 q^{e-1}}+\operatorname{Tr}_{q^{e} / q}^{2}(a) x^{2 q^{e-1}}+\operatorname{Tr}_{q^{e} / q}^{2}(a) a^{2 q^{e-1}}=0 \\
& \Rightarrow \operatorname{Tr}_{q^{e} / q}(a)=0 .
\end{aligned}
$$

$$
a+\operatorname{Tr}_{q^{e} / q}^{2}(x) a^{2 q^{e-1}}=0
$$

$a=0$ in all three following cases

- $\operatorname{Tr}_{q^{e} / q}(x)=0$
- $\operatorname{Tr}_{q^{e} / q}(x)=1$
- $\operatorname{Tr}_{q^{e} / q}(x) \neq 0,1$

Conjecture 4

Let $q=4, e=3 k, k \geq 1$, and $n=3 q^{0}+3 q^{2 k}+q^{4 k}$. Then

$$
g_{n, q} \equiv \mathrm{x}+S_{2 k}+S_{4 k}+S_{4 k} S_{2 k}^{3} \equiv \mathrm{x}+S_{2 k}^{q^{2 k}}+S_{2 k}^{q^{k}+3} \quad\left(\bmod \mathrm{x}^{q^{e}}-\mathrm{x}\right)
$$

$g_{n, q}$ is a PP of $\mathbb{F}_{q^{e}}$.

Theorem

Let $e=3 k, k \geq 1, q=2^{s}, s \geq 2$, and $n=(q-3) q^{0}+2 q^{1}+q^{2 k}+q^{4 k}$. Then

$$
g_{n, q} \equiv \mathrm{x}^{2}+S_{2 k} S_{4 k} \quad\left(\bmod \mathrm{x}^{q^{e}}-\mathrm{x}\right),
$$

and $g_{n, q}$ is a PP of $\mathbb{F}_{q^{e}}$.

A most recent result

Theorem

Let $q=p^{2}, e>0$, and $n=\left(p^{2}-p-1\right) q^{0}+(p-1) q^{e}+p q^{a}+q^{b}$, $a, b \geq 0$. Then

$$
g_{n, q}=-S_{a}^{p}-S_{b} S_{e}^{p-1} .
$$

Assume that $a+b \not \equiv 0(\bmod p)$ and

$$
\operatorname{gcd}\left(\mathrm{x}^{2 a+1}+2 \mathrm{x}^{a+1}+\mathrm{x}-\epsilon\left(\mathrm{x}^{b}+1\right)^{2},(\mathrm{x}+1)\left(\mathrm{x}^{e}+1\right)\right)=(\mathrm{x}+1)^{2},
$$

for $\epsilon=0,1$. Then $g_{n, q}$ is a PP of $\mathbb{F}_{q^{e}}$.

Example

Let $q=4, e>3, n=q^{0}+2 q^{1}+q^{2}+q^{e}$. Then,

$$
g_{n, q} \equiv x^{2}+x \operatorname{Tr}_{q^{e} / q}(x)+x^{q} \operatorname{Tr}_{q e / q}(x) \quad\left(\bmod x^{q^{e}}-\mathrm{x}\right) .
$$

We claim that when $\operatorname{gcd}\left(1+x+x^{2}, x^{e}+1\right)=1, g_{n, q}$ is a PP of $\mathbb{F}_{q^{e}}$.
Assume that $g_{n, q}(x)=g_{n, q}(y), x, y \in \mathbb{F}_{q^{e}}$.
$\operatorname{Tr}_{q^{e} / q}\left(g_{n, q}(x)\right)=\operatorname{Tr}_{q^{e} / q}\left(g_{n, q}(y)\right) \Rightarrow \operatorname{Tr}_{q^{e} / q}(x)=\operatorname{Tr}_{q^{e} / q}(y)$.
Let $\operatorname{Tr}_{q^{e} / q}(x)=\operatorname{Tr}_{q^{e} / q}(y)=a \in \mathbb{F}_{q}$.
If $a=0$, then $x=y$.
If $a \neq 0$, then $g_{n, q}(x)=g_{n, q}(y)$ becomes

$$
z^{2}=a\left(z+z^{q}\right)
$$

where $z=x+y$. Substituting the above equation to itself we get $\left(z^{2}\right)^{q}=\left(z^{2}\right)+\left(z^{2}\right)^{q^{2}}$.
Since $\operatorname{gcd}\left(1+x+x^{2}, x^{e}+1\right)=1$, we have $z=0$.

References

嘈
X．Hou，G．L．Mullen，J．A．Sellers，J．L．Yucas，Reversed Dickson polynomials over finite fields，Finite Fields Appl． 15 （2009）， 748 － 773.

冨
X．Hou，Two classes of permutation polynomials over finite fields，J． Combin．Theory A， 118 （2011）， 448 － 454.
（ X．Hou，A new approach to permutation polynomials over finite fields，Finite Fields Appl． 18 （2012） 492 － 521.
囯 N．Fernando，X．Hou，S．D．Lappano，A new approach to permutation polynomials over finite fields，II，submitted（2012）， Preprint available at http：／／arxiv．org／abs／1208．2942．
囯 R．Lidl and H．Niederreiter，Finite Fields，2nd ed．，Cambridge Univ． Press，Cambridge（1997）．

Thank You!

