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Background

Let p be a prime, q a power of p. Let Fq be the finite field with q
elements.

Dickson polynomials

Leonard Eugene Dickson (1897)

The n-th Dickson polynomial of the first kind Dn(x , a) is defined by

Dn(x , a) =

b n
2
c∑

i=0

n

n − i

(
n − i

i

)
(−a)ixn−2i ,

where a ∈ Fq is a parameter.
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Background (contd.)

The n-th reversed Dickson polynomial of the first kind Dn(a, x) is
defined by

Dn(a, x) =

b n
2
c∑

i=0

n

n − i

(
n − i

i

)
(−x)ian−2i ,

where a ∈ Fq is a parameter.

X. Hou, G. L. Mullen, J. A. Sellers, J. L. Yucas, Reversed Dickson
polynomials over finite fields, Finite Fields Appl. 15, 748 – 773,
(2009).
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Background (contd.)

Dn(1, x) =
1

2n−1
fn(1− 4x),

where

fn(x) =
∑
j≥0

(
n

2j

)
x j ∈ Z[x ].

X. Hou, T. Ly, Necessary conditions for reversed Dickson
polynomials to be permutational, Finite Fields Appl. 16, 436 – 448
(2010).
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Background (contd.)

Schur (1923)

The n-th Dickson polynomial of the second kind En(x , a) can be
defined by

En(x , a) =

b n
2
c∑

i=0

(
n − i

i

)
(−a)ixn−2i ,

where a ∈ Fq is a parameter.
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Background (contd.)

The n-th reversed Dickson polynomial of the second kind En(x , a)
can be defined by

En(a, x) =

b n
2
c∑

i=0

(
n − i

i

)
(−x)ian−2i ,

where a ∈ Fq is a parameter.

S. Hong, X. Qin, W. Zhao, Necessary conditions for reversed
Dickson polynomials of the second kind to be permutational, Finite
Fields Appl. 37, 54 –71 (2016).
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Background (contd.)

En(1, x) =
1

2n
fn+1(1− 4x),

where

fn(x) =
∑
j≥0

(
n

2j + 1

)
x j ∈ Z[x ].
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Background (contd.)

For a ∈ Fq, the n-th Dickson polynomial of the (k + 1)-th kind
Dn,k(x , a) is defined by

Dn,k(x , a) =

b n
2
c∑

i=0

n − ki

n − i

(
n − i

i

)
(−a)ixn−2i ,

and D0,k(x , a) = 2− k .

Q. Wang, J. L. Yucas, Dickson polynomials over finite fields, Finite
Fields Appl. 18 (2012), 814 – 831.
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Background (contd.)

Reversed Dickson Polynomials of the (k + 1)-th kind

For a ∈ Fq, the n-th reversed Dickson polynomial of the (k + 1)-th
kind Dn,k(a, x) is defined by

Dn,k(a, x) =

b n
2
c∑

i=0

n − ki

n − i

(
n − i

i

)
(−x)ian−2i ,

and D0,k(a, x) = 2− k .

• Dn,0(a, x) = Dn(a, x) and Dn,1(a, x) = En(a, x).

• Only need to consider 0 ≤ k ≤ p − 1 in characteristic p.
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Background (contd.)

When p is odd, the n-th reversed Dickson polynomial of the
(k + 1)-th kind Dn,k(1, x) can be written as

Dn,k(1, x) =
(1

2

)n
fn,k(1− 4x),

where

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
(x j − x j+1) + 2

∑
j≥0

(
n

2j

)
x j ∈ Z[x ]

for n ≥ 1 and

f0,k(x) = 2− k .

F., Reversed Dickson polynomials of the (k + 1)-th kind over finite
fields, J. Number Theory 172 (2017), 234 – 255.
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Self-reciprocal Polynomials
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Introduction

Let f (x) = 1 + 2x + 3x2 + 2x3 + x4.

• Its coefficients form a palindrome.

• Such polynomials are called self-reciprocal polynomials.

Question: How can we define self-reciprocal polynomials?
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Introduction (contd.)

Let’s consider a different polynomial.

f (x) = 1 + 2x + 3x2 + 2x3 + x4.

• The degree of the polynomial f (x) is 4.

• f
(
1
x

)
= 1 + 2

x + 3
x2

+ 2
x3

+ 1
x4
.

• Multiply f ( 1
x ) by xdeg(f ), i.e. x4, to obtain

x4f
(1

x

)
= x4 + 2x3 + 3x2 + 2x + 1.

• The polynomial xdeg(f ) f ( 1
x ) is called the reciprocal of f (x) and

we denote it by f ∗(x). Note that f (x) = xdeg(f ) f ( 1
x ).

Neranga Fernando Self-reciprocal polynomials and RDPs



Introduction (contd.)

Let’s consider a different polynomial.

f (x) = 1 + 2x + 3x2 + 2x3 + x4.

• The degree of the polynomial f (x) is 4.

• f
(
1
x

)
= 1 + 2

x + 3
x2

+ 2
x3

+ 1
x4
.

• Multiply f ( 1
x ) by xdeg(f ), i.e. x4, to obtain

x4f
(1

x

)
= x4 + 2x3 + 3x2 + 2x + 1.

• The polynomial xdeg(f ) f ( 1
x ) is called the reciprocal of f (x) and

we denote it by f ∗(x). Note that f (x) = xdeg(f ) f ( 1
x ).

Neranga Fernando Self-reciprocal polynomials and RDPs



Introduction (contd.)

Let’s consider a different polynomial.

f (x) = 1 + 2x + 3x2 + 2x3 + x4.

• The degree of the polynomial f (x) is 4.

• f
(
1
x

)
= 1 + 2

x + 3
x2

+ 2
x3

+ 1
x4
.

• Multiply f ( 1
x ) by xdeg(f ), i.e. x4, to obtain

x4f
(1

x

)
= x4 + 2x3 + 3x2 + 2x + 1.

• The polynomial xdeg(f ) f ( 1
x ) is called the reciprocal of f (x) and

we denote it by f ∗(x). Note that f (x) = xdeg(f ) f ( 1
x ).

Neranga Fernando Self-reciprocal polynomials and RDPs



Introduction (contd.)

Let’s consider a different polynomial.

f (x) = 1 + 2x + 3x2 + 2x3 + x4.

• The degree of the polynomial f (x) is 4.

• f
(
1
x

)
= 1 + 2

x + 3
x2

+ 2
x3

+ 1
x4
.

• Multiply f ( 1
x ) by xdeg(f ), i.e. x4, to obtain

x4f
(1

x

)
= x4 + 2x3 + 3x2 + 2x + 1.

• The polynomial xdeg(f ) f ( 1
x ) is called the reciprocal of f (x) and

we denote it by f ∗(x). Note that f (x) = xdeg(f ) f ( 1
x ).

Neranga Fernando Self-reciprocal polynomials and RDPs



Introduction (contd.)

Let’s consider a different polynomial.

f (x) = 1 + 2x + 3x2 + 2x3 + x4.

• The degree of the polynomial f (x) is 4.

• f
(
1
x

)
= 1 + 2

x + 3
x2

+ 2
x3

+ 1
x4
.

• Multiply f ( 1
x ) by xdeg(f ), i.e. x4, to obtain

x4f
(1

x

)
= x4 + 2x3 + 3x2 + 2x + 1.

• The polynomial xdeg(f ) f ( 1
x ) is called the reciprocal of f (x) and

we denote it by f ∗(x).

Note that f (x) = xdeg(f ) f ( 1
x ).

Neranga Fernando Self-reciprocal polynomials and RDPs



Introduction (contd.)

Let’s consider a different polynomial.

f (x) = 1 + 2x + 3x2 + 2x3 + x4.

• The degree of the polynomial f (x) is 4.

• f
(
1
x

)
= 1 + 2

x + 3
x2

+ 2
x3

+ 1
x4
.

• Multiply f ( 1
x ) by xdeg(f ), i.e. x4, to obtain

x4f
(1

x

)
= x4 + 2x3 + 3x2 + 2x + 1.

• The polynomial xdeg(f ) f ( 1
x ) is called the reciprocal of f (x) and

we denote it by f ∗(x). Note that f (x) = xdeg(f ) f ( 1
x ).

Neranga Fernando Self-reciprocal polynomials and RDPs



Definition of a self-reciprocal polynomial

The reciprocal f ∗(x) of a polynomial f (x) of degree n is defined by
f ∗(x) = xn f ( 1

x ),

i.e. if

f (x) = a0 + a1 x + a2 x
2 + · · ·+ an x

n,

then
f ∗(x) = an + an−1 x + an−2 x

2 + · · ·+ a0 x
n.

A polynomial f (x) is called self-reciprocal if f ∗(x) = f (x), i.e. if
f (x) = a0 + a1x + a2x

2 + · · ·+ anx
n, an 6= 0, is self-reciprocal,

then ai = an−i for 0 ≤ i ≤ n.
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Coding Theory

Coding theory is the study of methods for efficient and accurate
transfer of information from one place to another.

Information Source → Encoder → Channel (Noise) → Decoder →
Information Sink
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Coding Theory (contd.)

• The information to be sent is transmitted by a sequence of zeros
and ones which are called digits.

• A word is a sequence of digits.

• The length of a word is the number of digits in the word.

Example 0110101 is a word of length seven.
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Coding Theory (contd.)

• A binary code is a set C of words. The term “binary” refers to
the fact that only two digits, 0 and 1, are used, i.e. the digits are
elements of Z2.

• The code consisting of all words of length two is

C = {00, 10, 01, 11}.

• A block code is a code having all its words of the same length;
this number is called the length of a code.
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Coding Theory (contd.)

Let C be a block code of length n. Consider the codeword
c = (c0, c1, . . . , cn−2, cn−1) in C , and denote its reverse by c r

which is given by c r = (cn−1, cn−2, . . . , c1, c0).

Example The reverse of the codeword 0110101 is 1010110.
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Cyclic Codes

Consider the codeword c = (c0, c1, . . . , cn−1). If τ denotes the
cyclic shift, then τ(c) = (cn−1, c0, . . . , cn−2). A code C is said to
be a cyclic code if the cyclic shift of each codeword is also a
codeword.

Example The code C = {000, 110, 101, 011} is a cyclic code.
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Cyclic Codes (contd.)

The codeword
c = (c0, c1, . . . , cn−1)

can be represented by the polynomial

f (x) = c0 + c1x + · · ·+ cn−1x
n−1.

The cyclic shifts of c correspond to the polynomials

x i f (x) (mod xn − 1) for i = 0, 1, . . . , n − 1.

Example The codeword v = 1101000 can be represented by the
polynomial v(x) = 1 + x + x3. Here n = 7. Then the codeword
1000110 is represented by the polynomial

x4v(x) = x4 + x5 + x7 ≡ 1 + x4 + x5 (mod x7 − 1).
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An application of self-reciprocal polynomials in coding
theory

Among all non-zero codewords in a cyclic code C, there is a unique
codeword whose corresponding polynomial g(x) has minimum
degree and divides xn − 1. The polynomial g(x) is called the
generator polynomial of the cyclic code C .

In 1964, James L. Massey studied reversible codes over finite fields
and showed that the cyclic code generated by the monic
polynomial g(x) is reversible if and only if g(x) is self-reciprocal.

J. L. Massey, Reversible codes, Information and Control 7 (1964),
369 – 380.
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Recall fn,k(x)

When p is odd, the n-th reversed Dickson polynomial of the
(k + 1)-th kind Dn,k(1, x) can be written as

Dn,k(1, x) =
(1

2

)n
fn,k(1− 4x),

where

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
(x j − x j+1) + 2

∑
j≥0

(
n

2j

)
x j ∈ Z[x ]

for n ≥ 1 and

f0,k(x) = 2− k .
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Self-reciprocal polynomials over Z

For n ≥ 1, we have

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
(x j − x j+1) + 2

∑
j≥0

(
n

2j

)
x j ∈ Z[x ].

Theorem Let n > 1 be even. fn,k(x) is a self-reciprocal if and only
if k ∈ {0, 2}.

Theorem Let n > 1 be odd. fn,k(x) is a self-reciprocal if and only
if k = 1 or n = 3 when k = 3.
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Self-reciprocal polynomials over Z (contd.)

Recall again that for n ≥ 1,

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
(x j − x j+1) + 2

∑
j≥0

(
n

2j

)
x j ∈ Z[x ].

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
x j − k

∑
j≥0

(
n − 1

2j + 1

)
x j+1 + 2

∑
j≥0

(
n

2j

)
x j

Let n be even.

(k(n − 1) + 2) +

n
2
−1∑

j=1

[
k

(
n − 1

2j + 1

)
− k

(
n − 1

2j − 1

)
+ 2

(
n

2j

)]
x j + (2− k) x

n
2 .
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Self-reciprocal polynomials over Z (contd.)

Replace the constant term by the coefficient of x
n
2 above and define gn,k to be

gn,k(x) := (2−k) +

n
2
−1∑

j=1

[
k

(
n − 1

2j + 1

)
−k

(
n − 1

2j − 1

)
+ 2

(
n

2j

)]
x j + (2−k) x

n
2 .

Also, replace the coefficient of x
n
2 by the constant term and define hn,k to be

hn,k(x) := (k(n−1)+2)+

n
2
−1∑

j=1

[
k

(
n − 1

2j + 1

)
−k

(
n − 1

2j − 1

)
+2

(
n

2j

)]
x j+(k(n−1)+2) x

n
2 .
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Self-reciprocal polynomials over Z (contd.)

Theorem Let n > 1 be even. gn,k and hn,k are self-reciprocal if and only if
k = 0.
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Self-reciprocal polynomials over Z (contd.)

Recall again that for n ≥ 1,

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
(x j − x j+1) + 2

∑
j≥0

(
n

2j

)
x j ∈ Z[x ].
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∑
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n − 1

2j + 1

)
x j − k

∑
j≥0

(
n − 1

2j + 1

)
x j+1 + 2

∑
j≥0

(
n

2j

)
x j

Let n be odd.

(k(n−1)+2)+

n−1
2

−1∑
j=1

[
k

(
n − 1

2j + 1

)
−k

(
n − 1

2j − 1

)
+2

(
n

2j

)]
x j+(−k(n−1)+2n) x

n−1
2 .

Neranga Fernando Self-reciprocal polynomials and RDPs



Self-reciprocal polynomials over Z (contd.)

Recall again that for n ≥ 1,

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
(x j − x j+1) + 2

∑
j≥0

(
n

2j

)
x j ∈ Z[x ].

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
x j − k

∑
j≥0

(
n − 1

2j + 1

)
x j+1 + 2

∑
j≥0

(
n

2j

)
x j

Let n be odd.

(k(n−1)+2)+

n−1
2

−1∑
j=1

[
k

(
n − 1

2j + 1

)
−k

(
n − 1

2j − 1

)
+2

(
n

2j

)]
x j+(−k(n−1)+2n) x

n−1
2 .

Neranga Fernando Self-reciprocal polynomials and RDPs



Self-reciprocal polynomials over Z (contd.)

Recall again that for n ≥ 1,

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
(x j − x j+1) + 2

∑
j≥0

(
n

2j

)
x j ∈ Z[x ].

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
x j − k

∑
j≥0

(
n − 1

2j + 1

)
x j+1 + 2

∑
j≥0

(
n

2j

)
x j

Let n be odd.

(k(n−1)+2)+

n−1
2

−1∑
j=1

[
k

(
n − 1

2j + 1

)
−k

(
n − 1

2j − 1

)
+2

(
n

2j

)]
x j+(−k(n−1)+2n) x

n−1
2 .

Neranga Fernando Self-reciprocal polynomials and RDPs



Self-reciprocal polynomials over Z (contd.)

Replace the constant term by the coefficient of x
n−1
2 and define g∗

n,k to be

g∗
n,k(x) := (−k(n − 1) + 2n) +

n−1
2

−1∑
j=1

[
k

(
n − 1

2j + 1

)
− k

(
n − 1

2j − 1

)
+ 2

(
n

2j

)]
x j

+ (−k(n − 1) + 2n) x
n−1
2 .
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2 by the constant term and define h∗
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n,k(x) := (k(n−1)+2)+

n−1
2

−1∑
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k
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n − 1
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n
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Self-reciprocal polynomials over Z (contd.)

Theorem Let n > 1 be odd. g∗
n,k and h∗

n,k are self-reciprocal if and only if k = 1
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Self-reciprocal polynomials in odd characteristic

Let n > 1, p be an odd prime, and 0 ≤ k ≤ p − 1. Consider

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
(x j − x j+1) + 2

∑
j≥0

(
n

2j

)
x j ∈ Fp[x ].

Theorem Assume that n is even. Then fn,k(x) is a self-reciprocal if and only if
one of the following holds:

(i) k = 0.

(ii) k = 2 and n 6= (2`)p, where ` ∈ Z+.
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Self-reciprocal polynomials in odd characteristic (contd.)

Let n > 1, p be an odd prime, and 0 ≤ k ≤ p − 1. Consider

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
(x j − x j+1) + 2

∑
j≥0

(
n

2j

)
x j ∈ Fp[x ].

Theorem Assume that n > 0 is odd. Then fn,k(x) is a self-reciprocal if and
only if one of the following holds:

(i) n = 1 for any k.

(ii) k = 0 and n = p`, where ` ∈ Z+.

(iii) n = 3 and k = 3 when p > 3.

(iv) k = 1 and n + 1 6= (2`)p, where ` ∈ Z+.
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In characteristic 2

Recall that for n ≥ 1,

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
(x j − x j+1) + 2

∑
j≥0

(
n

2j

)
x j ∈ Z[x ].

When p = 2, we have

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
(x j − x j+1) ∈ F2[x ].

Theorem Let n > 1 and k = 1. Then fn,k(x) is a self-reciprocal if and only if n
is even.
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Thank you!
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