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Background

Let p be a prime, g a power of p. Let g be the finite field with g
elements.
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Background

Let p be a prime, g a power of p. Let g be the finite field with g
elements.

Dickson polynomials

Leonard Eugene Dickson (1897)

The n-th Dickson polynomial of the first kind Dp(x, a) is defined by

L3

Di(x,a) = - a I_ <” B i> (—a)'x"2,

i=0

where a € I is a parameter.
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Background (contd.)

The n-th reversed Dickson polynomial of the first kind D,(a, x) is
defined by

Da(a,x) = S _<”f i>(—x)fa"—2’,

i=0

NS

where a € F; is a parameter.
X. Hou, G. L. Mullen, J. A. Sellers, J. L. Yucas, Reversed Dickson

polynomials over finite fields, Finite Fields Appl. 15, 748 — 773,
(2009).

Neranga Fernando Self-reciprocal polynomials and RDPs



Background (contd.)

D,(1,x) = fa(1 — 4x),

2n—1
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Background (contd.)

D,(1,x) = fa(1 — 4x),

2n—1

where

Neranga Fernando Self-reciprocal polynomials and RDPs



Background (contd.)

D,(1,x) = fa(1 — 4x),

2n—1

where

()= (Z) € Z[x].

j=0

X. Hou, T. Ly, Necessary conditions for reversed Dickson
polynomials to be permutational, Finite Fields Appl. 16, 436 — 448
(2010).
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Background (contd.)

Schur (1923)

The n-th Dickson polynomial of the second kind E,(x, a) can be
defined by

where a € [ is a parameter.
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Background (contd.)

The n-th reversed Dickson polynomial of the second kind E,(x, a)
can be defined by

n—i : .
En(a7x) = ( . >(_X)Ian_2la
where a € F; is a parameter.

S. Hong, X. Qin, W. Zhao, Necessary conditions for reversed
Dickson polynomials of the second kind to be permutational, Finite
Fields Appl. 37, 54 71 (2016).
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Background (contd.)

Ea(1,x) =

on fn+1(1 — 4X),
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Background (contd.)

Ea(1,x) =

on fn+1(1 — 4X),

where
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Background (contd.)

Ea(1,x) =

on fn+1(1 — 4X),

where

()= (21'1 1) X € 7[x].

j=0

S. Hong, X. Qin, W. Zhao, Necessary conditions for reversed
Dickson polynomials of the second kind to be permutational, Finite
Fields Appl. 37, 54 —71 (2016).
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Background (contd.)

For a € Fg, the n-th Dickson polynomial of the (k + 1)-th kind
Dy «(x, a) is defined by

LJn—ki n—i Py
Dn,k(Xva): n—i I (_a)X J
i=0

NI

and Do x(x,a) =2 — k.

Q. Wang, J. L. Yucas, Dickson polynomials over finite fields, Finite
Fields Appl. 18 (2012), 814 — 831.
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Background (contd.)

For a € g, the n-th reversed Dickson polynomial of the (k + 1)-th
kind D, «(a, x) is defined by

and Dy x(a,x) =2 — k.

Q. Wang, J. L. Yucas, Dickson polynomials over finite fields, Finite
Fields Appl. 18 (2012), 814 — 831.
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Background (contd.)

Reversed Dickson Polynomials of the (k + 1)-th kind

For a € Fg, the n-th reversed Dickson polynomial of the (k 4 1)-th
kind D, «(a, x) is defined by

and Dg x(a,x) =2 — k.
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Background (contd.)

Reversed Dickson Polynomials of the (k + 1)-th kind

For a € Fg, the n-th reversed Dickson polynomial of the (k 4 1)-th
kind D, «(a, x) is defined by

and Dg x(a,x) =2 — k.

e Dyo(a,x) = Dp(a,x) and Dy 1(a, x) = En(a, x).
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Background (contd.)

Reversed Dickson Polynomials of the (k + 1)-th kind

For a € Fg, the n-th reversed Dickson polynomial of the (k 4 1)-th
kind D, «(a, x) is defined by

and Dg x(a,x) =2 — k.
e Dyo(a,x) = Dp(a,x) and Dy 1(a, x) = En(a, x).

e Only need to consider 0 < k < p — 1 in characteristic p.
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Background (contd.)

When p is odd, the n-th reversed Dickson polynomial of the
(k + 1)-th kind D, (1, x) can be written as

Dos(L, %) = (%) (1 — 4x),

Neranga Fernando Self-reciprocal polynomials and RDPs



Background (contd.)

When p is odd, the n-th reversed Dickson polynomial of the
(k + 1)-th kind D, (1, x) can be written as

Dos(L, %) = (%) (1 — 4x),

where
fk(X):kZ n—1 (xj—xj+1)+2z ") X € Z[x]
™ , 2j+1 , 2j
Jj=>0 Jj=>0
for n>1 and

for(x) =2—k.

Neranga Fernando Self-reciprocal polynomials and RDPs



Background (contd.)

When p is odd, the n-th reversed Dickson polynomial of the
(k + 1)-th kind D, (1, x) can be written as

Dos(L, %) = (%) (1 — 4x),

where
fk(X):kZ n—1 (xj—xj+1)+2z ") X € Z[x]
™ , 2j+1 , 2j
Jj=>0 Jj=>0
for n>1 and

for(x) =2—k.

F., Reversed Dickson polynomials of the (k + 1)-th kind over finite
fields, J. Number Theory 172 (2017), 234 — 255.
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Self-reciprocal Polynomials
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Introduction

Let f(x) = 1+ 2x + 3x2 + 2x3 + x*.
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Introduction

Let f(x) = 1+ 2x + 3x2 + 2x3 + x*.

e lts coefficients form a palindrome.

e Such polynomials are called self-reciprocal polynomials.

Question: How can we define self-reciprocal polynomials?
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Introduction (contd.)

Let's consider a different polynomial.

f(x) =1+ 2x 4 3x> +2x3 + x*.
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Introduction (contd.)

Let's consider a different polynomial.

f(x) =1+ 2x 4 3x> +2x3 + x*.

e The degree of the polynomial f(x) is 4.
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Introduction (contd.)

Let's consider a different polynomial.

f(x) =1+ 2x 4 3x> +2x3 + x*.

e The degree of the polynomial f(x) is 4.

ef(L)=1+2+3+3+%
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Introduction (contd.)

Let's consider a different polynomial.

f(x) =1+ 2x 4 3x> +2x3 + x*.

e The degree of the polynomial f(x) is 4.
ef(L)=1+2+3+3+%

e Multiply f(%) by x9e8(f) j.e. x*, to obtain

1
X4f(*) =x*+2x3 +3x% +2x + 1.
X

Neranga Fernando Self-reciprocal polynomials and RDPs



Introduction (contd.)

Let's consider a different polynomial.

f(x) =1+ 2x 4 3x> +2x3 + x*.
e The degree of the polynomial f(x) is 4.
ef(L)=1+2+3+3+%

e Multiply f(%) by x9e8(f) j.e. x*, to obtain
1
X4f(*) =x* +2x3 4+ 3x%2 + 2x + 1.
X

e The polynomial x9&(f) f(1) is called the reciprocal of f(x) and
we denote it by f*(x).
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Introduction (contd.)

Let's consider a different polynomial.

f(x) =1+ 2x 4 3x> +2x3 + x*.
e The degree of the polynomial f(x) is 4.
ef(L)=1+2+3+3+%

e Multiply f(%) by x9e8(f) j.e. x*, to obtain
1
X4f(*) =x* +2x3 4+ 3x%2 + 2x + 1.
X

e The polynomial x9&(f) f(1) is called the reciprocal of f(x) and
we denote it by f*(x). Note that f(x) = x(f) f(1).
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Definition of a self-reciprocal polynomial

The reciprocal f*(x) of a polynomial f(x) of degree n is defined by
F(x) = x" F(1),
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Definition of a self-reciprocal polynomial

The reciprocal f*(x) of a polynomial f(x) of degree n is defined by
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f(x) —ap+arx+ax’+---+apx",
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Definition of a self-reciprocal polynomial

The reciprocal f*(x) of a polynomial f(x) of degree n is defined by
F*(x) =x"f(L), ie if

f(x) —ap+arx+ax’+---+apx",

then
*(x) = ap+ap_1X+ anox>+ -+ agx".
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Definition of a self-reciprocal polynomial

The reciprocal f*(x) of a polynomial f(x) of degree n is defined by
F*(x) =x"f(L), ie if

f(x) —agtarx+ax®+-+apx",

then
*(x) = ap+ap_1X+ anox>+ -+ agx".

A polynomial f(x) is called self-reciprocal if f*(x) = f(x), i.e. if
f(x) = ap + aix + ax? + -+ apx", a, # 0, is self-reciprocal,
then a; = a,_; for 0 </ < n.
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Coding Theory

Coding theory is the study of methods for efficient and accurate
transfer of information from one place to another.

Information Source — Encoder — Channel (Noise) — Decoder —
Information Sink
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Coding Theory (contd.)

e The information to be sent is transmitted by a sequence of zeros
and ones which are called digits.
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Coding Theory (contd.)

e The information to be sent is transmitted by a sequence of zeros
and ones which are called digits.

e A word is a sequence of digits.
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Coding Theory (contd.)

e The information to be sent is transmitted by a sequence of zeros
and ones which are called digits.

e A word is a sequence of digits.

e The length of a word is the number of digits in the word.
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Coding Theory (contd.)

e The information to be sent is transmitted by a sequence of zeros
and ones which are called digits.

e A word is a sequence of digits.
e The length of a word is the number of digits in the word.

Example 0110101 is a word of length seven.
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Coding Theory (contd.)

e A binary code is a set C of words. The term “binary” refers to
the fact that only two digits, 0 and 1, are used, i.e. the digits are
elements of Z».
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Coding Theory (contd.)

e A binary code is a set C of words. The term “binary” refers to
the fact that only two digits, 0 and 1, are used, i.e. the digits are
elements of Z».

e The code consisting of all words of length two is

C = {00,10,01,11}.

Neranga Fernando Self-reciprocal polynomials and RDPs



Coding Theory (contd.)

e A binary code is a set C of words. The term “binary” refers to
the fact that only two digits, 0 and 1, are used, i.e. the digits are
elements of Z».

e The code consisting of all words of length two is

C = {00,10,01,11}.

e A block code is a code having all its words of the same length;
this number is called the length of a code.
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Coding Theory (contd.)

Let C be a block code of length n. Consider the codeword
¢ =(co,C1,...,Cn—2,¢n—1) in C, and denote its reverse by c"
which is given by ¢" = (¢p—1,Cp—2,..., €1, ).
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Coding Theory (contd.)

Let C be a block code of length n. Consider the codeword
¢ =(co,C1,...,Cn—2,¢n—1) in C, and denote its reverse by c"
which is given by ¢" = (¢p—1,Cp—2,..., €1, ).

Example The reverse of the codeword 0110101 is 1010110.
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Cyclic Codes

Consider the codeword ¢ = (¢, c1, ..., Cn—1). If 7 denotes the
cyclic shift, then 7(c) = (¢p-1, 0, - - -, cn—2). A code C is said to
be a cyclic code if the cyclic shift of each codeword is also a
codeword.

Neranga Fernando Self-reciprocal polynomials and RDPs



Cyclic Codes

Consider the codeword ¢ = (¢, c1, ..., Cn—1). If 7 denotes the
cyclic shift, then 7(c) = (¢p-1, 0, - - -, cn—2). A code C is said to
be a cyclic code if the cyclic shift of each codeword is also a
codeword.

Example The code C = {000, 110,101,011} is a cyclic code.
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Cyclic Codes (contd.)

The codeword
c= (CO) Cly- ooy Cnfl)

can be represented by the polynomial
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Cyclic Codes (contd.)

The codeword
c=(co,C1y.-.,Cn-1)
can be represented by the polynomial

f(X) = +tCx+---+ Cn_lxnil.
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Cyclic Codes (contd.)

The codeword
c=(co,C1y.-.,Cn-1)
can be represented by the polynomial

f(X) = +tCx+---+ Cn_lxnil.

The cyclic shifts of ¢ correspond to the polynomials
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Cyclic Codes (contd.)

The codeword
c=(co,C1y.-.,Cn-1)
can be represented by the polynomial

f(X) = +tCx+---+ Cn_lxnil.

The cyclic shifts of ¢ correspond to the polynomials

x'f(x) (mod x" —1) for i=0,1,...,n— 1.
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Cyclic Codes (contd.)

The codeword
c= (CO) Cly- ooy Cnfl)

can be represented by the polynomial

f(X) = +tCx+---+ Cn_lxnil.

The cyclic shifts of ¢ correspond to the polynomials

x'f(x) (mod x" —1) for i=0,1,...,n— 1.

Example The codeword v = 1101000 can be represented by the
polynomial v(x) =1 + x + x5.
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Cyclic Codes (contd.)

The codeword
c= (CO) Cly- ooy Cnfl)

can be represented by the polynomial

f(X) = +tCx+---+ Cn_lxnil.

The cyclic shifts of ¢ correspond to the polynomials

x'f(x) (mod x" —1) for i=0,1,...,n— 1.

Example The codeword v = 1101000 can be represented by the
polynomial v(x) =1+ x + x>. Here n =17.
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Cyclic Codes (contd.)

The codeword
c=(co,C1y.-.,Cn-1)
can be represented by the polynomial

f(X) = +tCx+---+ Cn_lxnil.

The cyclic shifts of ¢ correspond to the polynomials

x'f(x) (mod x" —1) for i=0,1,...,n— 1.

Example The codeword v = 1101000 can be represented by the
polynomial v(x) =1+ x + x>. Here n = 7. Then the codeword
1000110 is represented by the polynomial
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Cyclic Codes (contd.)

The codeword
c=(co,C1y.-.,Cn-1)
can be represented by the polynomial

f(X) = +tCx+---+ Cn_lxnil.

The cyclic shifts of ¢ correspond to the polynomials

x'f(x) (mod x" —1) for i=0,1,...,n— 1.

Example The codeword v = 1101000 can be represented by the
polynomial v(x) =1+ x + x>. Here n = 7. Then the codeword
1000110 is represented by the polynomial

vx)=xt 4+ x4+ x" =14+ x4 +x° (mod x" —1).
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An application of self-reciprocal polynomials in coding

theory

Among all non-zero codewords in a cyclic code C, there is a unique
codeword whose corresponding polynomial g(x) has minimum
degree and divides x” — 1. The polynomial g(x) is called the
generator polynomial of the cyclic code C.
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An application of self-reciprocal polynomials in coding

theory

Among all non-zero codewords in a cyclic code C, there is a unique
codeword whose corresponding polynomial g(x) has minimum
degree and divides x” — 1. The polynomial g(x) is called the
generator polynomial of the cyclic code C.

In 1964, James L. Massey studied reversible codes over finite fields
and showed that the cyclic code generated by the monic
polynomial g(x) is reversible if and only if g(x) is self-reciprocal.

J. L. Massey, Reversible codes, Information and Control 7 (1964),
369 — 380.
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Recall £, x(x)

When p is odd, the n-th reversed Dickson polynomial of the
(k + 1)-th kind D, (1, x) can be written as

Dos(L, %) = (%) (1 — 4x),

where

)=k Y <2';+11> (o — Xy 12 3 < ) X € Z[x]

j>0 Jj20

for n>1 and

fb,k(x) =2—k.
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Self-reciprocal polynomials over Z

For n > 1, we have

fk(x) =k Y (2’3111) (=X +2 ) ( ) X € 7]x].

j>0 j>0
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Self-reciprocal polynomials over Z

For n > 1, we have

w5 () e s (5) 4 e

Jj=0 Jj=0

Theorem Let n > 1 be even. f, «(x) is a self-reciprocal if and only
if k € {0,2}.
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Self-reciprocal polynomials over Z

For n > 1, we have

w5 () e s (5) 4 e

Jj=0 Jj=0

Theorem Let n > 1 be even. f, «(x) is a self-reciprocal if and only
if k € {0,2}.

Theorem Let n > 1 be odd. f, «(x) is a self-reciprocal if and only
if k=1o0r n=3 when k =3.
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Self-reciprocal polynomials over Z (contd.)

Recall again that for n > 1,

nk(x_kz< >xf x”1+2z(>xf € ZIx].

j>0
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Self-reciprocal polynomials over Z (contd.)

Recall again that for n > 1,

nk(x_kz< >xf x”1+2z(>xer[x]

j>0

n—1 i n +1 j
fok(x) =k > <2j+1>xJkZ (2 +1>x’ +2>° (2J>XJ

j>0 >0 j>0
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Self-reciprocal polynomials over Z (contd.)

Recall again that for n > 1,

nk(x_kz< >xf x”1+2z(>xer[x]

j>0

n—1 i n +1 j
fok(x) =k > <2j+1>xJkZ (2 +1>x’ +2>° <2J>XJ

j>0 >0 j>0

Let n be even.

NIs

(k(n—1)+2)+ > [k (;1) —k (2’;__11> +2 <2’;>} X+ (2— k) x5,

J=1
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Self-reciprocal polynomials over Z (contd.)

Replace the constant term by the coefficient of x?2 above and define &,k to be

gni(x) == (2— k) + ; [k <,er11) —k (2’;‘_11> +2 (2)] X+ (2— k) x5
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Self-reciprocal polynomials over Z (contd.)

Replace the constant term by the coefficient of x? above and define &,k to be

gn,k(x) 2—-k)+ QZ[ < )—k(;j__ll>+2<1>]xJ+(2 k)x%

Also, replace the coefficient of x2 by the constant term and define h, « to be

hni(x) :== (k(n— 1)+2)+Z [ (2 +11> —k (2'3__11>+2 ( J)]x’+(k(n 1)42) x2
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Self-reciprocal polynomials over Z (contd.)

Theorem Let n > 1 be even. gy« and h, « are self-reciprocal if and only if
k=0.
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Self-reciprocal polynomials over Z (contd.)

Recall again that for n > 1,

fn,k(x):kz<;+1)( — Xt +QZ( )XJ € Z[x].

j=0
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Self-reciprocal polynomials over Z (contd.)

Recall again that for n > 1,

fok(x) =k > <2’;+1)( —xX 42> ( >>a' € Z[x].

j>0 j>0

n—1 i n 11 i
fn,k(x):k;o <2j+1)x1k; (2 +1>x’ +23° (J>xf

>0
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Self-reciprocal polynomials over Z (contd.)

Recall again that for n > 1,

fok(x) =k > <2’;+1)( —xX 42> ( >>a' € Z[x].

j>0 j>0

n—1 i n 11 i
fn,k(x):k;o <2j+1)x1k; (2 +1>x’ +23° (J>xf

>0

Let n be odd.

((n-1)+2)+ 3 [* (2’;;1) —k (2'3_11> 42 <2’3>] W(—k(n—1)42n) x"7"

j=1
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Self-reciprocal polynomials over Z (contd.)

n—1
Replace the constant term by the coefficient of x 2

and define g, 4 to be

&nk(x) == (=k(n—1)+2n) + Z [ <2J+11> k<2'3_—11)+2(2r;>]xj

n—1

+(—k(n—=1)4+2n) x 2.
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Self-reciprocal polynomials over Z (contd.)

n—1
Replace the constant term by the coefficient of x 2

&nk(x) == (=k(n—1)+2n) + Z [ <2J+11> k<2'3_—11)+2(2r;>]xj

—|—(—k(n—1)+2n)x z .

and define g, 4 to be

.. n—1 . *
Also, replace the coefficient of x 2~ by the constant term and define h;, , to be

hk(x) = (k(n=1)+2)+ [k <2';+11) —k (2';_11> +2 (Z)] X+ (k(n—1)42)

=t
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Self-reciprocal polynomials over Z (contd.)

Theorem Let n > 1 be odd. g, , and h;, , are self-reciprocal if and only if k =1
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Self-reciprocal polynomials in odd characteristic

Let n > 1, p be an odd prime, and 0 < k < p — 1. Consider

for(x) = k Z (2 +1> =X +2 Y <2';>x’ € Fplx].

j=>0

Theorem Assume that nis even. Then f, «(x) is a self-reciprocal if and only if
one of the following holds:

(i) k=0.
(i) k=2 and n# (20)p, where £ € Z*.
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Self-reciprocal polynomials in odd characteristic (contd.)

Let n > 1, p be an odd prime, and 0 < k < p — 1. Consider

nkx)_kz<2”1> xf“+2z< )xj € F,[x].

>0 j>0

Theorem Assume that n > 0 is odd. Then f, «(x) is a self-reciprocal if and
only if one of the following holds:

(i) n=1 for any k.

(i) k=0and n=p’, where £ € Z".

(ili) n=3and k =3 when p > 3.

(iv) k=1and n+1# (20)p, where £ € Z7.
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In characteristic 2

Recall that for n > 1,

nk(x_kz< ) xJ“+2Z(>xJ € Z[x].

j>0

When p = 2, we have

)=k 3 <2’3_+11) — x*1) € Fyl«].

j>0

Theorem Let n > 1 and k = 1. Then f, «(x) is a self-reciprocal if and only if n
is even.
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Thank you!

Neranga Fernan




