New Classes of Permutation Polynomials over Finite Fields defined by Functional Equations

Neranga Fernando

Joint work with Xiang-dong Hou and Stephen Lappano

Department of Mathematics and Statistics
University of South Florida
Joint Mathematics Meeting, San Diego 2013
January 09, 2013

Permutation polynomials

Let \mathbb{F}_{q} be the finite field with q elements.

Definition

A polynomial $f(x) \in \mathbb{F}_{q}[\mathrm{x}]$ is called a permutation polynomial (PP) over finite field \mathbb{F}_{q} if the mapping $x \mapsto f(x)$ is a permutation of \mathbb{F}_{q}.

Facts

- Every linear polynomial over \mathbb{F}_{q} is a permutation polynomial of \mathbb{F}_{q}.
- The monomial x^{n} is a permutation polynomial of \mathbb{F}_{q} if and only if $\operatorname{gcd}(n, q-1)=1$.

Polynomial $g_{n, q}$

[Hou 2011]
$q=p^{k}, n \geq 0$.
There exists a unique polynomial $g_{n, q} \in \mathbb{F}_{p}[x]$ such that

$$
\sum_{a \in \mathbb{F}_{q}}(x+a)^{n}=g_{n, q}\left(x^{q}-x\right)
$$

Question: When is $g_{n, q}$ a permutation polynomial(PP) of $\mathbb{F}_{q^{e}}$?
If $g_{n, q}$ is a PP, we call triple ($n, e ; q$) desirable.

Outline

- Basic properties of the polynomial $g_{n, q}$
- The Case $e=1$
- The Case $n=q^{a}-q^{b}-1,0<b<a<p e$.
- Results with even q

Polynomial $g_{n, q}$

$$
g_{n, q}(x)=\sum_{\frac{n}{q} \leq 1 \leq \frac{n}{q-1}} \frac{n}{l}\binom{1}{n-I(q-1)} x^{n-l(q-1)}
$$

The Polynomial $g_{n, q}$

Recurrence

$$
\begin{aligned}
& g_{0, q}=\ldots=g_{q-2, q}=0 \\
& g_{q-1, q}=-1
\end{aligned}
$$

$$
g_{n, q}=x g_{n-q, q}+g_{n-q+1, q}, \quad n \geq q
$$

When $n<0$

Recurrence relation for $n \geq 0$ can be used to define $g_{n, q}$ for $n<0$:

$$
g_{n, q}=\frac{1}{x}\left(g_{n+q, q}-g_{n+1, q}\right) .
$$

For $n<0$, there exists a $g_{n, q} \in \mathbb{F}_{p}\left[x, x^{-1}\right]$ such that

$$
\sum_{a \in \mathbb{F}_{q}}(x+a)^{n}=g_{n, q}\left(x^{q}-x\right)
$$

Recurrence relation holds for all $n \in \mathbb{Z}$.

Desirable Triples

Equivalence

(1) $g_{p n, q}=g_{n, q}^{p}$.
(2) If $n_{1}, n_{2}>0$ are integers such that $n_{1} \equiv n_{2}\left(\bmod q^{p e}-1\right)$, then $g_{n_{1}, q} \equiv g_{n_{2}, q}\left(\bmod x^{q^{e}}-x\right)$.
(3) If $m, n>0$ belong to the same p-cyclotomic coset modulo $q^{p e}-1$, we say that two triples ($m, e ; q$) and ($n, e ; q$) are equivalent and write $(m, e ; q) \sim(n, e ; q)$.

If $(m, e ; q) \sim(n, e ; q)$,
$g_{m, q}$ is a PP if and only if $g_{n, q}$ is a PP.

The case $e=1$

Namely, modulo $\mathrm{x}^{q}-\mathrm{x}$,

$$
g_{n, q}(\mathrm{x}) \equiv a_{n} \mathrm{x}^{n}+ \begin{cases}\mathrm{x}^{q-1}-1 & \text { if } n>0, n \equiv 0 \quad(\bmod q-1) \\ 0 & \text { otherwise }\end{cases}
$$

where $\quad \sum_{n \geq 0} a_{n} \mathrm{t}^{n}=\frac{-\mathrm{t}^{q-1}}{1-\mathrm{t}^{q-1}-\mathrm{t}^{q}}$.
When $q>2$,
$(n, 1 ; q)$ is desirable if and only if $\operatorname{gcd}(n, q-1)=1$ and $a_{n} \neq 0$.
When $q=2$,
$(n, 1 ; 2)$ is desirable if and only if $a_{n}=0\left(\right.$ in $\left.\mathbb{F}_{2}\right)$.

The case $n=q^{a}-q^{b}-1,0<b<a<p e$.

$g_{q^{a}-q^{b}-1, q}$

Define $S_{a}=x+x^{q}+\cdots+x^{q^{a-1}}$ for every integer $a \geq 0$.
For $0<b<a<p e$, we have

$$
g_{q^{a}-q^{b}-1, q}=-\frac{1}{\mathrm{x}}-\frac{\left(S_{b}^{q-1}-1\right) S_{a-b}^{q^{b}}}{\mathrm{x}^{q^{b}+1}}
$$

Assume $e \geq 2$. Write

$$
a-b=a_{0}+a_{1} e, \quad b=b_{0}+b_{1} e,
$$

where $a_{0}, a_{1}, b_{0}, b_{1} \in \mathbb{Z}$ and $0 \leq a_{0}, b_{0}<e$. Then we have
Namely modulo $\mathrm{x}^{\mathrm{q}^{e}}-\mathrm{x}$,

$$
g_{q^{a}-q^{b}-1, q} \equiv-\mathrm{x}^{q^{e}-2}-\mathrm{x}^{q^{e}-q^{b_{0}}-2}\left(a_{1} S_{e}+S_{a_{0}}^{q_{0}}\right)\left(\left(b_{1} S_{e}+S_{b_{0}}\right)^{q-1}-1\right) .
$$

```
\(g_{q^{a}-q^{b}-1, q}\)
The case \(b=0\)
```

If $b=0$ and $a>0$, we have $n \equiv q^{a}-2\left(\bmod q^{p e}-1\right)$.

$$
g_{q^{a}-2, q}=\mathrm{x}^{q-2}+\mathrm{x}^{q^{2}-2}+\cdots+\mathrm{x}^{q^{a-1}-2} .
$$

Conjecture 1
Let $e \geq 2$ and $2 \leq a<p e$. Then $\left(q^{a}-2, e ; q\right)$ is desirable if and only if
(i) $a=3$ and $q=2$, or
(ii) $a=2$ and $\operatorname{gcd}\left(q-2, q^{e}-1\right)=1$.

```
\(g_{q^{a}-q^{b}-1, q}\) The case \(e \geq 3\)
```


Conjecture 2

Let $e \geq 3$ and $n=q^{a}-q^{b}-1,0<b<a<p e$. Then $(n, e ; q)$ is desirable if and only if
(i) $a=2, b=1$, and $\operatorname{gcd}\left(q-2, q^{e}-1\right)=1$, or
(ii) $a \equiv b \equiv 0(\bmod e)$.

Theorem

Let p be an odd prime and q a power of p.
(i) Let $0<i \leq \frac{1}{2}(p-1)$ and $n=q^{p+2 i}-q^{p}-1$. Then

$$
g_{n, q}(x)= \begin{cases}(2 i-1) x^{q-2} & \text { if } x \in \mathbb{F}_{q}, \\ \frac{2 i-1}{x}+\frac{2 i}{x^{q}} & \text { if } x \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q} .\end{cases}
$$

(ii) For the n in (ii), $(n, 2 ; q)$ is desirable if and only if $4 i \not \equiv 1(\bmod p)$.
$g_{q^{a}-q^{b}-1, q}$
The Case $b=p, e=2$

Theorem

Let p be an odd prime and q a power of p.
(i) Let $0<i \leq \frac{1}{2}(p-1)$ and $n=q^{p+2 i-1}-q^{p}-1$. Then

$$
g_{n, q}(x)= \begin{cases}2(i-1) x^{q-2} & \text { if } x \in \mathbb{F}_{q}, \\ \frac{2 i-1}{x}+\frac{2 i-2}{x^{q}} & \text { if } x \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q} .\end{cases}
$$

(ii) For the n in (i), $(n, 2 ; q)$ is desirable if and only if $i>1$ and $4 i \not \equiv 3$ $(\bmod p)$.

Conjecture 3

1. Let $f=x^{q-2}+t \mathrm{x}^{q^{2}-q-1}, t \in \mathbb{F}_{q}^{*}$. Then f is a PP of $\mathbb{F}_{q^{2}}$ if and only if one of the following occurs:
(i) $t=1, q \equiv 1(\bmod 4)$;
(ii) $t=-3, q \equiv \pm 1(\bmod 12)$;
(iii) $t=3, q \equiv-1(\bmod 6)$.

Conjecture 3

1. Let $f=x^{q-2}+t \mathrm{x}^{q^{2}-q-1}, t \in \mathbb{F}_{q}^{*}$. Then f is a PP of $\mathbb{F}_{q^{2}}$ if and only if one of the following occurs:
(i) $t=1, q \equiv 1(\bmod 4)$;
(ii) $t=-3, q \equiv \pm 1(\bmod 12)$;
(iii) $t=3, q \equiv-1(\bmod 6)$.
2. Recently proved in the paper "A class of permutation binomials over finite fields" by X . Hou.

Theorem

Let p be an odd prime, $q=p^{k}, n=q^{p+i+1}-q^{2 i+1}-1$. If

$$
\left(\frac{2 i+1}{q}\right)= \begin{cases}1 & : \text { if } i \text { is odd } \\ (-1)^{\frac{q-1}{2}} & : \text { if } i \text { is even. }\end{cases}
$$

where $\left(\frac{a}{b}\right)$ is the Jacobian symbol, then $\left(q^{p+i+1}-q^{2 i+1}-1,2 ; q\right)$ is desirable.

Results with even q.

Theorem

Let $e=3 k, k \geq 1, q=2^{s}, s \geq 2$, and $n=(q-3) q^{0}+2 q^{1}+q^{2 k}+q^{4 k}$. Then

$$
g_{n, q} \equiv \mathrm{x}^{2}+S_{2 k} S_{4 k} \quad\left(\bmod \mathrm{x}^{q^{e}}-\mathrm{x}\right),
$$

and $g_{n, q}$ is a PP of $\mathbb{F}_{q^{e}}$.

Conjecture 3

Let $q=4, e=3 k, k \geq 1$, and $n=3 q^{0}+3 q^{2 k}+q^{4 k}$. Then

$$
g_{n, q} \equiv \mathrm{x}+S_{2 k}+S_{4 k}+S_{4 k} S_{2 k}^{3} \equiv \mathrm{x}+S_{2 k}^{q^{2 k}}+S_{2 k}^{q^{k}+3} \quad\left(\bmod \mathrm{x}^{q^{e}}-\mathrm{x}\right)
$$

$g_{n, q}$ is a PP of $\mathbb{F}_{q^{e}}$.

Theorem

Let $q=p^{2}, e>0$, and $n=\left(p^{2}-p-1\right) q^{0}+(p-1) q^{e}+p q^{a}+q^{b}$, $a, b \geq 0$. Then

$$
g_{n, q}=-S_{a}^{p}-S_{b} S_{e}^{p-1} .
$$

Assume that $a+b \not \equiv 0(\bmod p)$ and

$$
\operatorname{gcd}\left(\mathrm{x}^{2 a+1}+2 \mathrm{x}^{a+1}+\mathrm{x}-\epsilon\left(\mathrm{x}^{b}+1\right)^{2},(\mathrm{x}+1)\left(\mathrm{x}^{e}+1\right)\right)=(\mathrm{x}+1)^{2},
$$

for $\epsilon=0,1$. Then $g_{n, q}$ is a PP of $\mathbb{F}_{q^{e}}$.

References

X. Hou, Two classes of permutation polynomials over finite fields, J. Combin. Theory A, 118 (2011), 448 - 454.
R
X. Hou, A new approach to permutation polynomials over finite fields, Finite Fields Appl. 18 (2012) 492 - 521.
嗇 N. Fernando, X. Hou, S. D. Lappano, A new approach to permutation polynomials over finite fields, II, submitted (2012), Preprint available at http://arxiv.org/abs/1208.2942.
R. R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, Cambridge (1997).

Thank You!

