New Classes of Permutation Polynomials over Finite Fields defined by Functional Equations

Neranga Fernando

Joint work with Xiang-dong Hou and Stephen Lappano

Department of Mathematics and Statistics University of South Florida

Joint Mathematics Meeting, San Diego 2013

January 09, 2013

Let \mathbb{F}_q be the finite field with q elements.

Definition

A polynomial $f(x) \in \mathbb{F}_q[x]$ is called a permutation polynomial (PP) over finite field \mathbb{F}_q if the mapping $x \mapsto f(x)$ is a permutation of \mathbb{F}_q .

Facts

- Every linear polynomial over \mathbb{F}_q is a permutation polynomial of \mathbb{F}_q .
- ▶ The monomial x^n is a permutation polynomial of \mathbb{F}_q if and only if gcd(n, q 1) = 1.

[Hou 2011]

 $q = p^k, n \ge 0.$

There exists a unique polynomial $g_{n,q} \in \mathbb{F}_p[x]$ such that

$$\sum_{a \in \mathbb{F}_q} (x+a)^n = g_{n,q}(x^q-x)$$

Question : When is $g_{n,q}$ a permutation polynomial(PP) of \mathbb{F}_{q^e} ? If $g_{n,q}$ is a PP, we call triple (n, e; q) desirable.

- Basic properties of the polynomial $g_{n,q}$
- The Case e = 1
- The Case $n = q^a q^b 1$, 0 < b < a < pe.
- Results with even q

$$g_{n,q}(x) = \sum_{\frac{n}{q} \le l \le \frac{n}{q-1}} \frac{n}{l} \binom{l}{n-l(q-1)} x^{n-l(q-1)}$$

Neranga Fernando New classes of PPs over finite fields defined by functional equations

イロン イ団と イヨン -

3

The Polynomial $g_{n,q}$

Recurrence

$$g_{0,q} = \ldots = g_{q-2,q} = 0,$$

 $g_{q-1,q} = -1,$

$$g_{n,q} = xg_{n-q,q} + g_{n-q+1,q} \quad , \quad n \geq q$$

< 🗇 🕨

< ∃⇒

э

Recurrence relation for $n \ge 0$ can be used to define $g_{n,q}$ for n < 0:

$$g_{n,q}=\frac{1}{x}(g_{n+q,q}-g_{n+1,q}).$$

For n < 0, there exists a $g_{n,q} \in \mathbb{F}_p[x, x^{-1}]$ such that

$$\sum_{a \in \mathbb{F}_q} (x+a)^n = g_{n,q}(x^q-x)$$

Recurrence relation holds for all $n \in \mathbb{Z}$.

- (1) $g_{pn,q} = g_{n,q}^{p}$.
- (2) If $n_1, n_2 > 0$ are integers such that $n_1 \equiv n_2 \pmod{q^{pe} 1}$, then $g_{n_1,q} \equiv g_{n_2,q} \pmod{x^{q^e} x}$.
- (3) If m, n > 0 belong to the same p-cyclotomic coset modulo q^{pe} 1, we say that two triples (m, e; q) and (n, e; q) are equivalent and write (m, e; q) ~ (n, e; q).

If
$$(m, e; q) \sim (n, e; q)$$

 $g_{m,q}$ is a PP if and only if $g_{n,q}$ is a PP.

The case e = 1

Namely, modulo $x^q - x$,

$$g_{n,q}(\mathbf{x}) \equiv a_n \mathbf{x}^n + egin{cases} \mathbf{x}^{q-1} - 1 & ext{if } n > 0, \ n \equiv 0 \pmod{q-1}, \\ 0 & ext{otherwise}, \end{cases}$$

where \sum

$$\sum_{n=0}^{\infty}a_nt^n=\frac{-t^n}{1-t^{q-1}-t^q}.$$

When q > 2,

(n, 1; q) is desirable if and only if gcd(n, q - 1) = 1 and $a_n \neq 0$.

⊥a-1

When q = 2, (n, 1; 2) is desirable if and only if $a_n = 0$ (in \mathbb{F}_2).

The case
$$n = q^a - q^b - 1$$
, $0 < b < a < pe$.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへ⊙

Define $S_a = x + x^q + \dots + x^{q^{a-1}}$ for every integer $a \ge 0$. For 0 < b < a < pe, we have

$$g_{q^a-q^b-1,q}=-rac{1}{\mathrm{x}}-rac{(S_b^{q-1}-1)S_{a-b}^{q^b}}{\mathrm{x}^{q^b+1}}.$$

Assume $e \geq 2$. Write

$$a-b=a_0+a_1e, \quad b=b_0+b_1e,$$

where $a_0, a_1, b_0, b_1 \in \mathbb{Z}$ and $0 \le a_0, b_0 < e$. Then we have Namely modulo $x^{q^e} - x$,

$$g_{q^{a}-q^{b}-1,q} \equiv -x^{q^{e}-2} - x^{q^{e}-q^{b_{0}}-2} (a_{1}S_{e} + S_{a_{0}}^{q^{b_{0}}}) ((b_{1}S_{e} + S_{b_{0}})^{q-1} - 1).$$

If b = 0 and a > 0, we have $n \equiv q^a - 2 \pmod{q^{pe} - 1}$.

$$g_{q^{\mathfrak{d}}-2,q} = \mathbf{x}^{q-2} + \mathbf{x}^{q^2-2} + \cdots + \mathbf{x}^{q^{\mathfrak{d}-1}-2}.$$

Conjecture 1

Let $e \ge 2$ and $2 \le a < pe$. Then $(q^a - 2, e; q)$ is desirable if and only if

(i)
$$a = 3$$
 and $q = 2$, or
(ii) $a = 2$ and $gcd(q - 2, q^e - 1) = 1$.

< ∃⇒

Conjecture 2

Let $e \ge 3$ and $n = q^a - q^b - 1$, 0 < b < a < pe. Then (n, e; q) is desirable if and only if

(i)
$$a = 2, b = 1$$
, and $gcd(q - 2, q^e - 1) = 1$, or
(ii) $a \equiv b \equiv 0 \pmod{e}$.

∃ >

Theorem

Let p be an odd prime and q a power of p. (i) Let $0 < i \le \frac{1}{2}(p-1)$ and $n = q^{p+2i} - q^p - 1$. Then

$$g_{n,q}(x) = egin{cases} (2i-1)x^{q-2} & ext{if } x \in \mathbb{F}_q, \ rac{2i-1}{x} + rac{2i}{x^q} & ext{if } x \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q. \end{cases}$$

(ii) For the *n* in (ii), (n, 2; q) is desirable if and only if $4i \not\equiv 1 \pmod{p}$.

Theorem

Let p be an odd prime and q a power of p. (i) Let $0 < i \le \frac{1}{2}(p-1)$ and $n = q^{p+2i-1} - q^p - 1$. Then

$$g_{n,q}(x) = egin{cases} 2(i-1)x^{q-2} & ext{if } x \in \mathbb{F}_q, \ rac{2i-1}{x} + rac{2i-2}{x^q} & ext{if } x \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q. \end{cases}$$

(ii) For the *n* in (i), (n, 2; q) is desirable if and only if i > 1 and $4i \neq 3 \pmod{p}$.

- 1. Let $f = x^{q-2} + tx^{q^2-q-1}$, $t \in \mathbb{F}_q^*$. Then f is a PP of \mathbb{F}_{q^2} if and only if one of the following occurs:
 - (i) t = 1, $q \equiv 1 \pmod{4}$; (ii) t = -3, $q \equiv \pm 1 \pmod{12}$; (iii) t = 3, $q \equiv -1 \pmod{6}$.

- 1. Let $f = x^{q-2} + tx^{q^2-q-1}$, $t \in \mathbb{F}_q^*$. Then f is a PP of \mathbb{F}_{q^2} if and only if one of the following occurs:
 - (i) t = 1, $q \equiv 1 \pmod{4}$; (ii) t = -3, $q \equiv \pm 1 \pmod{12}$; (iii) t = 3, $q \equiv -1 \pmod{6}$.

2. Recently proved in the paper "A class of permutation binomials over finite fields" by X. Hou.

Let p be an odd prime, $q = p^k$, $n = q^{p+i+1} - q^{2i+1} - 1$. If

$$\binom{2i+1}{q} = \begin{cases} 1 & : \text{ if } i \text{ is odd,} \\ (-1)^{\frac{q-1}{2}} & : \text{ if } i \text{ is even.} \end{cases}$$

where $\begin{pmatrix} \underline{a} \\ b \end{pmatrix}$ is the Jacobian symbol, then $(q^{p+i+1} - q^{2i+1} - 1, 2; q)$ is desirable.

Results with even q.

э

-

Let e = 3k, $k \ge 1$, $q = 2^s$, $s \ge 2$, and $n = (q - 3)q^0 + 2q^1 + q^{2k} + q^{4k}$. Then

$$g_{n,q} \equiv \mathrm{x}^2 + S_{2k}S_{4k} \pmod{\mathrm{x}^{q^\mathrm{e}} - \mathrm{x}},$$

and $g_{n,q}$ is a PP of \mathbb{F}_{q^e} .

Let
$$q = 4$$
, $e = 3k$, $k \ge 1$, and $n = 3q^0 + 3q^{2k} + q^{4k}$. Then
 $g_{n,q} \equiv x + S_{2k} + S_{4k} + S_{4k}S_{2k}^3 \equiv x + S_{2k}^{q^{2k}} + S_{2k}^{q^k+3} \pmod{x^{q^e} - x}$.
 $g_{n,q}$ is a PP of \mathbb{F}_{q^e} .

< 🗇 🕨

ヨト イヨト

э

Let $q = p^2$, e > 0, and $n = (p^2 - p - 1)q^0 + (p - 1)q^e + pq^a + q^b$, $a, b \ge 0$. Then

$$g_{n,q}=-S^p_a-S_bS^{p-1}_e.$$

Assume that $a + b \not\equiv 0 \pmod{p}$ and

 $gcd(x^{2a+1} + 2x^{a+1} + x - \epsilon(x^b + 1)^2, (x + 1)(x^e + 1)) = (x + 1)^2,$

for $\epsilon = 0, 1$. Then $g_{n,q}$ is a PP of \mathbb{F}_{q^e} .

- X. Hou, *Two classes of permutation polynomials over finite fields*, J. Combin. Theory A, **118** (2011), 448 454.
- X. Hou, A new approach to permutation polynomials over finite fields, Finite Fields Appl. **18** (2012) 492 521.
- N. Fernando, X. Hou, S. D. Lappano, A new approach to permutation polynomials over finite fields, II, submitted (2012), Preprint available at http://arxiv.org/abs/1208.2942.
- R. Lidl and H. Niederreiter, *Finite Fields*, 2nd ed., Cambridge Univ. Press, Cambridge (1997).

Thank You!

< 🗇 🕨

프 > 프