From *r*-Linearized Polynomial Equations to *r^m*-Linearized Polynomial Equations

Neranga Fernando

Joint work with Xiang-dong Hou

Department of Mathematics Northeastern University

Fq12, Saratoga Springs, NY

July 13 - 17 ,2015

- 4 同 6 4 日 6 4 日 6

- Introduction
- r-Linearized and r^m-Linearized Equations
- Applications to Permutation Polynomials
 - A Criterion
 - ▶ The Polynomial g_{n,q}
 - Applications to g_{n,q}

Let p be a prime and $\mathbb{F}_{q_1}, \mathbb{F}_{q_2} \subset \overline{\mathbb{F}}_p$, where $\overline{\mathbb{F}}_p$ is the algebraic closure of \mathbb{F}_p . A q_1 -linearized polynomial over \mathbb{F}_{q_2} is a polynomial of the form

$$f = a_0 \mathbf{X}^{q_1^0} + a_1 \mathbf{X}^{q_1^1} + \dots + a_n \mathbf{X}^{q_1^n} \in \mathbb{F}_{q_2}[\mathbf{X}].$$

If $f \in \mathbb{F}_{q_2}[X]$ is q_1 -linearized and $g \in \mathbb{F}_{q_1}[X]$ is q_2 -linearized, then $f \circ g = g \circ f$.

(日) (日) (日)

3

Let $f = \sum_{i=0}^{n} a_i X^{q^i} \in \overline{\mathbb{F}}_p[X]$ be a *q*-linearized polynomial.

- The conventional associate of f is the polynomial $\tilde{f} = \sum_{i=0}^{n} a_i x^i \in \overline{\mathbb{F}}_p[X].$
- Let f, g ∈ F_q[X] be q-linearized polynomials. Then gcd(f,g) is a q-linearized polynomial over F_q[X] with gcd(f,g) = gcd(f, g).

Introduction (Contd.)

Let r be a prime power. Let $\mathbb{F}_r \subset \overline{\mathbb{F}}_p$ and $q = r^m$. Assume that $z \in \overline{\mathbb{F}}_p$ satisfies an equation

$$\sum_{i=0}^{m-1} a_i f_i(z)^{r^i} = 0, \qquad (1)$$

(4回) (注) (注) (注) (注)

where $a_i \in \mathbb{F}_q$ and $f_i \in \mathbb{F}_r[X]$ is *q*-linearized.

(1) is an *r*-linearized equation with coefficients in \mathbb{F}_q .

Question: Is it possible to derive from (1) a *q*-linearized equation with coefficients in \mathbb{F}_r ?

Let p be a prime, $\mathbb{F}_r \subset \overline{\mathbb{F}}_p$ and $q = r^m$. Let R_q denote the set of all q-linearized polynomials over \mathbb{F}_q .

Assume that for $0 \le i \le m-1$, $a_i \in \mathbb{F}_q$ and $f_i \in \mathbb{F}_r[X]$ is *q*-linearized.

Define

$$M = \begin{bmatrix} a_0 f_0 & a_1 f_1 & \cdots & a_{m-1} f_{m-1} \\ a_{m-1}^r f_{m-1} \circ X^q & a_0^r f_0 & \cdots & a_{m-2}^r f_{m-2} \\ \vdots & \vdots & \vdots \\ a_1^{r^{m-1}} f_1 \circ X^q & a_2^{r^{m-1}} f_2 \circ X^q & \cdots & a_0^{r^{m-1}} f_0 \end{bmatrix} \in \mathcal{M}_{n \times n}(R_q).$$
(2)

イロン イ部ン イヨン イヨン 三日

Theorem

Assume that for $0 \le i \le m-1$, $a_i \in \mathbb{F}_q$ and $f_i \in \mathbb{F}_r[X]$ is *q*-linearized. Assume that $z \in \overline{\mathbb{F}}_p$ satisfies the equation

$$\sum_{i=0}^{m-1} a_i f_i^{r^i}(z) = 0.$$
 (3)

Then we have

$$(\det M)(z) = 0, \tag{4}$$

where det M is a q-linearized polynomial over \mathbb{F}_r .

r-Linearized and *r^m*-Linearized Equations (Contd.) Outline of the proof

$$\sum_{i=0}^{m-1} a_i f_i^{r^i}(z) = 0.$$
 (5)

Raise the left side of (5) to the power of r^j , $0 \le j \le m-1$, and express the results in a matrix form. We have

$$\left(\sum_{j=0}^{m-1} \begin{bmatrix} a_{j}f_{j}^{r^{j}} \\ a_{j-1}^{r}f_{j-1}^{r^{j}} \\ \vdots \\ a_{0}^{r^{j}}f_{0}^{r^{j}} \\ a_{m-1}^{r^{j}}f_{m-1}^{r^{j}} \circ X^{q} \\ \vdots \\ a_{j+1}^{r^{m-1}}f_{j+1}^{r^{j}} \circ X^{q} \end{bmatrix}\right)(z) = 0.$$
(6)

向下 イヨト イヨト

Neranga Fernando, Joint work with Xiang-dong Hou Linearized Polynomial Equations

r-Linearized and r^m -Linearized Equations (Contd.) Outline of the proof

$$M = \begin{bmatrix} a_0 f_0 & a_1 f_1 & \cdots & a_{m-1} f_{m-1} \\ a'_{m-1} f_{m-1} \circ X^q & a'_0 f_0 & \cdots & a'_{m-2} f_{m-2} \\ \vdots & \vdots & \vdots \\ a'_1^{m-1} f_1 \circ X^q & a'_2^{m-1} f_2 \circ X^q & \cdots & a'_0^{m-1} f_0 \end{bmatrix} \in M_{n \times n}(R_q).$$
(7)
Label the rows and columns of M from 0 through $m - 1$. Let M_0 be the submatrix M with its 0th column deleted, and, for
$$0 \le i \le m - 1, \text{ let } M_{i,0} \text{ be the submatrix of } M_0 \text{ with its } i \text{th row}$$
deleted. Put $D_i = (-1)^i \det M_{i,0}, 0 \le i \le m - 1$.

▲圖▶ ▲屋▶ ▲屋▶

r-Linearized and *r^m*-Linearized Equations (Contd.) Outline of the proof

$$0 = \left(\begin{bmatrix} D_0, \cdots, D_{m-1} \end{bmatrix} \circ \begin{bmatrix} a_0 f_0 \\ a_{m-1}^r f_{m-1} \circ X^q \\ \vdots \\ a_1^{r^{m-1}} f_1 \circ X^q \end{bmatrix} \right) (z) = (\det M)(z).$$

(4回) (4回) (4回)

æ

Neranga Fernando, Joint work with Xiang-dong Hou Linearized Polynomial Equations

A polynomial $f \in \mathbb{F}_q[x]$ is called a *permutation polynomial* (PP) of \mathbb{F}_q if the mapping $x \mapsto f(x)$ is a permutation of \mathbb{F}_q .

Let *m* and *e* be positive integers, *r* a prime power and $q = r^m$. Define $S_e = X^{q^0} + X^{q^1} + \cdots + X^{q^{e-1}}$.

A Criterion

A polynomial $f \in \mathbb{F}_{q^e}[X]$ is a PP of \mathbb{F}_{q^e} if the following three conditions are satisfied.

(ロ) (同) (E) (E) (E)

Applications to Permutation Polynomials (Contd.) A Criterion

(i) There exists a PP $\overline{f} \in \mathbb{F}_q[X]$ of \mathbb{F}_q such that the diagram

commutes.

(ii) For each $c \in \mathbb{F}_q$, there exist q-linearized polynomials $f_{c,i} \in \mathbb{F}_r[X]$ and $a_{c,i} \in \mathbb{F}_q$, $0 \le i \le m-1$, and $b_c \in \mathbb{F}_{q^e}$ such that

$$f(x) = f_c(x) + b_c \quad \text{for all } x \in S_e^{-1}(c), \tag{8}$$

where

$$f_c = \sum_{i=0}^{m-1} a_{c,i} f_{c,i}^{r^i}.$$
 (9)

Applications to Permutation Polynomials (Contd.) A Criterion

(iii) For each $c \in \mathbb{F}_q$,

$$\gcd(\det A_c, \ (X^e - 1)/(X - 1)) = 1, \tag{10}$$

・回 ・ ・ ヨ ・ ・ ヨ ・

where

$$A_{c} = \begin{bmatrix} a_{c,0}\tilde{f}_{c,0} & a_{c,1}\tilde{f}_{c,1} & \cdots & a_{c,m-1}\tilde{f}_{c,m-1} \\ a_{c,m-1}^{r}\tilde{f}_{c,m-1}X & a_{c,0}^{r}\tilde{f}_{c,0} & \cdots & a_{c,m-2}^{r}\tilde{f}_{c,m-2} \\ \vdots & \vdots & \vdots \\ a_{c,1}^{r^{m-1}}\tilde{f}_{c,1}X & a_{c,2}^{r^{m-1}}\tilde{f}_{c,2}X & \cdots & a_{c,0}^{r^{m-1}}\tilde{f}_{c,0} \end{bmatrix}, \quad (11)$$

and () denotes the conventional associate of a q-linearized polynomial over $\mathbb{F}_q.$

The Polynomial $g_{n,q}$

Let $p = \operatorname{char} \mathbb{F}_q$. For each integer $n \ge 0$, there is a polynomial $g_{n,q} \in \mathbb{F}_p[X]$ defined by the functional equation

$$\sum_{c\in\mathbb{F}_q} (X+c)^n = g_{n,q} (X^q - X).$$
(12)

(ロ) (同) (E) (E) (E)

• X. Hou, *Two classes of permutation polynomials over finite fields*, J. Combin. Theory Ser. A **118** (2011), 448 – 454.

Question: When is $g_{n,q}$ a permutation polynomial(*PP*) of \mathbb{F}_{q^e} ? If $g_{n,q}$ is a PP of \mathbb{F}_{q^e} , we call triple (n, e; q) **desirable**.

Applications to Permutation Polynomials (Contd.) The Polynomial $g_{n,q}$

$$g_{0,q} = \ldots = g_{q-2,q} = 0,$$

 $g_{q-1,q} = -1,$

$$g_{n,q} = xg_{n-q,q} + g_{n-q+1,q} , n \ge q$$

æ

Neranga Fernando, Joint work with Xiang-dong Hou Linearized Polynomial Equations

(1) X. Hou, A new approach to permutation polynomials over finite fields, Finite Fields Appl. **18** (2012), 492 – 521.

(2) N. Fernando, X. Hou, S. D. Lappano, *A new approach to permutation polynomials over finite fields, II*, Finite Fields Appl. **22** (2013), 122 – 158.

(3) N. Fernando, X. Hou, S. D. Lappano, *Permutation polynomials* over finite fields involving $x + x^q + \cdots + x^{q^{a-1}}$, Discrete Math. **315** (2014), 173 – 184.

- Computer searches for desirable triples with small values of q and e were conducted.
- A table of **desirable** triples when q = 4 and e ≤ 6 was given in (2).

(ロ) (同) (E) (E) (E)

For each integer $a \ge 0$, define $S_a = X + X^q + \cdots + X^{q^{a-1}}$.

Proposition

Let q = 4 and $n = 1 + q^a + q^b + q^e + q^{e+k}$, where a, b, e, and k are positive integers. Then

$$g_{n,q} \equiv S_a S_b + (S_a + S_b + S_e) S_k + S_e^2 \pmod{X^{q^e} - X}.$$
 (13)
If $gcd(e, 2k) = 1$ and $a = k$ or $b = k$, then $g_{n,q}$ is a PP of \mathbb{F}_{q^e} .

Outline of the proof $g_{n,q} \equiv S_k^2 + S_e^2 + S_e S_k \pmod{X^{q^e} - X}$. Let $S_e = c$.

$$\overline{f} = X^2, f_{c,0} = f_{c,1} = S_k, \ a_{c,0} = c, \ a_{c,1} = 1, \ b_c = c^2$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition

Let q = 4 and $n = 1 + 3q^a + q^e + 2q^{e+a}$, where e and a are positive integers. Then

$$g_{n,q} \equiv X^{q^a} + S_e + S_a^2 S_e^2 + S_a S_e^3 \pmod{X^{q^e} - X}.$$

If $2 \mid e \text{ and } \gcd(e, 2a + 1) = 1$, then $g_{n,q}$ is a PP of \mathbb{F}_{q^e} .

Proposition

Let q = 4 and $n = 1 + 2q^2 + q^4 + q^e + 2q^{e+2}$, where e is a positive integer. Then

$$g_{n,q} \equiv X^{q^3} + S_e + S_2^2 S_e^2 + S_4 S_e^3 \pmod{X^{q^e} - X}.$$

イロト イポト イヨト イヨト

If $2 \mid e \text{ but } 5 \nmid e$, then $g_{n,q}$ is a PP of \mathbb{F}_{q^e} .

Proposition

Let q = 4 and $n = 1 + 2q^1 + 2q^{e-1} + 2q^{e+1}$, where e > 1 is an integer. Then

$$g_{n,q} \equiv S_2 + X^2 S_e^2 + S_{e-1}^2 S_e^2 \pmod{X^{q^e} - X}.$$

If e is odd, then $g_{n,q}$ is a PP of \mathbb{F}_{q^e} .

A Generalization

Let q = 4 and $f = S_a + X^2 S_e^2 + S_b^2 S_e^2$, where a, b, and e are positive integers. Then f is a PP of \mathbb{F}_{q^e} if $2 \mid (a + b)$, gcd(e, a) = 1, and

$$gcd\Big(\frac{X^{2a}+1+X^{2b+1}+X^3}{(X+1)^2},\;\frac{X^e+1}{X+1}\Big)=1.$$

(4回) (注) (注) (注) (三)

Proposition

Let q = 4 and $n = 1 + 2q^1 + q^3 + q^e + 2q^{e+1}$, where e is a positive integer. Then

$$g_{n,q} \equiv X^{q^2} + S_e + X^2 S_e^2 + S_3 S_e^3 \pmod{X^{q^e} - X}.$$

If $2 \mid e \text{ but } 3 \nmid e$, then $g_{n,q}$ is a PP of \mathbb{F}_{q^e} . A Generalization

Let q = 4 and $f = S_a + S_b + S_e + X^2 S_e^2 + S_b S_e^3$, where a, b, and e are positive integers. Then f is a PP of \mathbb{F}_{q^e} if $2 \mid (a + e)$, gcd(e, a - b) = 1, and

$$\text{gcd}\Big(\frac{X^{2a}+X^3+X+1}{(X+1)^2}, \ \frac{X^e+1}{X+1}\Big) = 1.$$

イロト イヨト イヨト イヨト

Table

е	n	base 4 digits of <i>n</i>	reference
2	59	3,2,3	*
2	127	3,3,3,1	*
3	29	1,3,1	*
3	101	1,1,2,1	*
3	149	1,1,1,2	
3	163	3,0,2,2	*
3	281	1,2,1,0,1	*
3	307	3,0,3,0,1	*
3	329	1,2,0,1,1	*
3	341	1,1,1,1,1	*
3	2047	3,3,3,3,3,1	*
4	281	1,2,1,0,1	*
4	307	3,0,3,0,1	
4	401	1,0,1,2,1	*

Table : Desirable triples (n, e; 4), $e \leq 6$, $w_4(n) > 4$

Neranga Fernando, Joint work with Xiang-dong Hou

< 17 >

- ◆ 臣 ▶ - ◆ 臣 ▶ - -

* - [Hou 2012], [Fernando, Hou, Lappano 2013] • - New Results

е	n	base 4 digits of <i>n</i>	reference
4	547	3,0,2,0,2	*
4	779	3,2,0,0,3	*
4	787	3,0,1,0,3	*
4	817	1,0,3,0,3	
4	899	3,0,0,2,3	*
4	1469	1,3,3,2,1,1	
4	2201	1,2,1,2,0,2	
4	2317	1,3,0,0,1,2	•
4	2321	1,0,1,0,1,2	*
4	2377	1,2,0,1,1,2	•
4	2441	1,2,0,2,1,2	
4	4387	3,0,2,0,1,0,1	
4	32767	3,3,3,3,3,3,3,1	*
5	29	1,3,1	*

Table : Desirable triples (n, e; 4), $e \leq 6$, $w_4(n) > 4$

Neranga Fernando, Joint work with Xiang-dong Hou

< 🗇 🕨

* - [Hou 2012], [Fernando, Hou, Lappano 2013] • - New Results

Table : Desirable triples (n, e; 4), $e \leq 6$, $w_4(n) > 4$

е	n	base 4 digits of <i>n</i>	reference
5	1049	1,2,1,0,0,1	*
5	1061	1,1,2,0,0,1	*
5	1169	1,0,1,2,0,1	*
5	1289	1,2,0,0,1,1	*
5	1409	1,0,0,2,1,1	*
5	1541	1,1,0,0,2,1	*
5	1601	1,0,0,1,2,1	*
5	2083	3,0,2,0,0,2	*
5	2563	3,0,0,0,2,2	*
5	4229	1,1,0,2,0,0,1	*
5	4289	1,0,0,3,0,0,1	
5	4387	3,0,2,0,1,0,1	
5	5129	1,2,0,0,0,1,1	*

Neranga Fernando, Joint work with Xiang-dong Hou

* - [Hou 2012], [Fernando, Hou, Lappano 2013] • - New Results

е	n	base 4 digits of <i>n</i>	reference
5	5141	1,1,1,0,0,1,1	*
5	5189	1,1,0,1,0,1,1	*
5	5249	1,0,0,2,0,1,1	*
5	5381	1,1,0,0,1,1,1	*
5	8713	1,2,0,0,2,0,2	•
5	9281	1,0,0,1,0,1,2	*
5	17429	1,1,1,0,0,1,0,1	•
5	17441	1,0,2,0,0,1,0,1	*
5	17489	1,0,1,1,0,1,0,1	•
5	17681	1,0,1,0,1,1,0,1	•
5	524287	3,3,3,3,3,3,3,3,3,3,1	*
6	4361	1,2,0,0,1,0,1	*
6	6161	1,0,1,0,0,2,1	*
6	6401	1,0,0,0,1,2,1	*

Table : Desirable triples (n, e; 4), $e \leq 6$, $w_4(n) > 4$

Neranga Fernando, Joint work with Xiang-dong Hou

・日・ ・ ヨ ・ ・ ヨ ・ ・

* - [Hou 2012], [Fernando, Hou, Lappano 2013] • - New Results

е	n	base 4 digits of <i>n</i>	reference
6	8227	3,0,2,0,0,0,2	*
6	8707	3,0,0,0,2,0,2	*
6	12299	3,2,0,0,0,0,3	*
6	12307	3,0,1,0,0,0,3	*
6	14339	3,0,0,0,0,2,3	*
6	37121	1,0,0,0,1,0,1,2	*
6	65801	1,2,0,0,1,0,0,0,1	*
6	65921	1,0,0,2,1,0,0,0,1	
6	66307	3,0,0,0,3,0,0,0,1	*
6	135209	1,2,2,0,0,0,1,0,2	
6	135217	1,0,3,0,0,0,1,0,2	•
6	135457	1,0,2,0,1,0,1,0,2	•
6	137249	1,0,2,0,0,2,1,0,2	
6	8388607	3,3,3,3,3,3,3,3,3,3,3,3,1	*

Table : Desirable triples (n, e; 4), $e \leq 6$, $w_4(n) > 4$

Neranga Fernando, Joint work with Xiang-dong Hou Line

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

N. Fernando, X. Hou, From r-linearized polynomial equations to r^m -linearized polynomial equations, (2015). arXiv: 1503.03162

3

(1) A. Akbary, D. Ghioca, Q. Wang, *On constructing permutations of finite fields*, Finite Fields Appl. **17** (2011), 51 – 67.

(2) X. Caruso, J. Le Borgne, *Some algorithms for skew polynomials over finite fields*, arXiv1212.3582, 2012.

(3) M. Giesbrecht, *Factoring in skew-polynomial rings over finite fields*, J. Symbolic Comput. **26** (1998), 463 – 486.

(4) M. Hall, *A combinatorial problem on abelian groups*, Proc. Amer. Math. Soc. **3** (1952), 584 – 587.

(5) X. Hou, *Proof of a conjecture on permutation polynomials over finite fields*, Finite Fields Appl. **24** (2013) 192 – 195.

イロン イ部ン イヨン イヨン 三日

Thank You!

<ロ> (四) (四) (三) (三) (三) (三)

Neranga Fernando, Joint work with Xiang-dong Hou Linearized Polynomial Equations