Quandles, racks and shelves

Neranga Fernando
Department of Mathematics and Computer Science
College of the Holy Cross
Worcester, MA 01610

October 14, 2022

Introduction

Knots

Introduction

Knots

A knot is a simple, closed curve

Introduction

Knots

A knot is a simple, closed curve, where "simple" means the curve does not intersect itself and "closed" means there are no loose ends.

Introduction

Knots

A knot is a simple, closed curve, where "simple" means the curve does not intersect itself and "closed" means there are no loose ends.

We usually think of knots in three-dimensional space.

Introduction (contd.)

Knot Diagram

Introduction (contd.)

Knot Diagram

A knot diagram is a projection or shadow of a knot on a plane where we indicate which strand passes over and which passes under at apparent crossing points by drawing the understrand broken.

Introduction (contd.)

Knot Diagram

A knot diagram is a projection or shadow of a knot on a plane where we indicate which strand passes over and which passes under at apparent crossing points by drawing the understrand broken.

Introduction (contd.)

A knot is called tame if it has a diagram with a finite number of crossing points.

Introduction (contd.)

A knot is called tame if it has a diagram with a finite number of crossing points.

Two knots K_{0} and K_{1} have the same knot type if we can move K_{0} around in space in a continuous way, i.e. without cutting or tearing the knot, to match up K_{0} with K_{1}.

Introduction (contd.)

A knot is called tame if it has a diagram with a finite number of crossing points.

Two knots K_{0} and K_{1} have the same knot type if we can move K_{0} around in space in a continuous way, i.e. without cutting or tearing the knot, to match up K_{0} with K_{1}.
k_{0} is ambient isotopic to K_{1} if there is a continuous map

$$
H: \mathbb{R}^{3} \times[0,1] \rightarrow \mathbb{R}^{3}
$$

such that $H\left(K_{0}, 0\right)=K_{0}, H\left(K_{0}, 1\right)=K_{1}$ and $H(x, t)$ is injective for every $t \in[0,1]$.

Introduction (contd.)

A knot is called tame if it has a diagram with a finite number of crossing points.

Two knots K_{0} and K_{1} have the same knot type if we can move K_{0} around in space in a continuous way, i.e. without cutting or tearing the knot, to match up K_{0} with K_{1}.
k_{0} is ambient isotopic to K_{1} if there is a continuous map

$$
H: \mathbb{R}^{3} \times[0,1] \rightarrow \mathbb{R}^{3}
$$

such that $H\left(K_{0}, 0\right)=K_{0}, H\left(K_{0}, 1\right)=K_{1}$ and $H(x, t)$ is injective for every $t \in[0,1]$.

Such a map is called an ambient isotopy.

Introduction (contd.)

In 1926, Kurt Reidemeister introduced a method to determine whether two given knot diagrams, K_{0} and K_{1}, are ambient isotopic.

Introduction (contd.)

In 1926, Kurt Reidemeister introduced a method to determine whether two given knot diagrams, K_{0} and K_{1}, are ambient isotopic.

Two knot diagrams, K_{0} and K_{1}, represent the same knot type, if we can identify an explicit sequence of three moves taking K_{0} to K_{1},

Introduction (contd.)

In 1926, Kurt Reidemeister introduced a method to determine whether two given knot diagrams, K_{0} and K_{1}, are ambient isotopic.

Two knot diagrams, K_{0} and K_{1}, represent the same knot type, if we can identify an explicit sequence of three moves taking K_{0} to K_{1}, and these moves are now called Reidemeister moves.

Reidemeister moves

$\stackrel{\text { III }}{\sim}$

Knot Invariants

A knot invariant is a function $f: \mathcal{K} \rightarrow X$ from the set of all knot diagrams to a set X such that for each Reidemeister move, we have

$$
f\left(K_{1}\right)=f\left(K_{2}\right)
$$

where K_{1} is the knot diagram before the move and K_{2} is the same diagram after the move.

Knot Invariants

A knot invariant is a function $f: \mathcal{K} \rightarrow X$ from the set of all knot diagrams to a set X such that for each Reidemeister move, we have

$$
f\left(K_{1}\right)=f\left(K_{2}\right)
$$

where K_{1} is the knot diagram before the move and K_{2} is the same diagram after the move.

If f is a knot invariant, then any two diagrams related by
Reidemeister moves must give the same value when we evaluate f.

Knot Invariants (contd.)

Crossing Number - The minimal number of crossings in any diagram of K.

Knot Invariants (contd.)

Crossing Number - The minimal number of crossings in any diagram of K. This is an example of a geometric invariant.

Knot Invariants (contd.)

Crossing Number - The minimal number of crossings in any diagram of K. This is an example of a geometric invariant. Generally hard to compute.

Knot Invariants (contd.)

Crossing Number - The minimal number of crossings in any diagram of K. This is an example of a geometric invariant. Generally hard to compute.

Computable Knot Invariants

Knot Invariants (contd.)

Crossing Number - The minimal number of crossings in any diagram of K. This is an example of a geometric invariant. Generally hard to compute.

Computable Knot Invariants

The Jones Polynomial - A discovery by Vaughan Jones in 1984

Knot Invariants (contd.)

Crossing Number - The minimal number of crossings in any diagram of K. This is an example of a geometric invariant. Generally hard to compute.

Computable Knot Invariants
The Jones Polynomial - A discovery by Vaughan Jones in 1984
Fox Tricoloring - Introduced by Ralph Fox in the 1950s

Knot Invariants (contd.)

Crossing Number - The minimal number of crossings in any diagram of K. This is an example of a geometric invariant. Generally hard to compute.

Computable Knot Invariants
The Jones Polynomial - A discovery by Vaughan Jones in 1984
Fox Tricoloring - Introduced by Ralph Fox in the 1950s
A tricoloring of a knot diagram is a choice of color for each arc in the diagram from a set of three colors.

Fox Tricoloring

A tricoloring is valid if at every crossing we either have all three colors the same or all three colors different.

Fox Tricoloring

A tricoloring is valid if at every crossing we either have all three colors the same or all three colors different.

A valid tricoloring is nontrivial if it uses all three colors.

Fox Tricoloring

A tricoloring is valid if at every crossing we either have all three colors the same or all three colors different.

A valid tricoloring is nontrivial if it uses all three colors.

Figure-eight knot

Figure-eight knot

Not tri-colorable

Let X be a set. An operation \triangleright which takes two elements $x, y \in X$ and gives us back an element $x \triangleright y \in X$ is a Kei operation if it satisfies the following three axioms:

Let X be a set. An operation \triangleright which takes two elements $x, y \in X$ and gives us back an element $x \triangleright y \in X$ is a Kei operation if it satisfies the following three axioms:
(i) For all $x \in X, x \triangleright x=x$

Let X be a set. An operation \triangleright which takes two elements $x, y \in X$ and gives us back an element $x \triangleright y \in X$ is a Kei operation if it satisfies the following three axioms:
(i) For all $x \in X, x \triangleright x=x$
(ii) For all $x, y \in X,(x \triangleright y) \triangleright y=x$

Kei

Let X be a set. An operation \triangleright which takes two elements $x, y \in X$ and gives us back an element $x \triangleright y \in X$ is a Kei operation if it satisfies the following three axioms:
(i) For all $x \in X, x \triangleright x=x$
(ii) For all $x, y \in X,(x \triangleright y) \triangleright y=x$
(iii) For all $x, y, z \in X,(x \triangleright y) \triangleright z=(x \triangleright z) \triangleright(y \triangleright z)$.

Let X be a set. An operation \triangleright which takes two elements $x, y \in X$ and gives us back an element $x \triangleright y \in X$ is a Kei operation if it satisfies the following three axioms:
(i) For all $x \in X, x \triangleright x=x$
(ii) For all $x, y \in X,(x \triangleright y) \triangleright y=x$
(iii) For all $x, y, z \in X,(x \triangleright y) \triangleright z=(x \triangleright z) \triangleright(y \triangleright z)$.

The term "kei" was coined by Mituhisa Takasaki in 1942.

Let X be a set. An operation \triangleright which takes two elements $x, y \in X$ and gives us back an element $x \triangleright y \in X$ is a Kei operation if it satisfies the following three axioms:
(i) For all $x \in X, x \triangleright x=x$
(ii) For all $x, y \in X,(x \triangleright y) \triangleright y=x$
(iii) For all $x, y, z \in X,(x \triangleright y) \triangleright z=(x \triangleright z) \triangleright(y \triangleright z)$.

The term "kei" was coined by Mituhisa Takasaki in 1942. The second axiom says

Let X be a set. An operation \triangleright which takes two elements $x, y \in X$ and gives us back an element $x \triangleright y \in X$ is a Kei operation if it satisfies the following three axioms:
(i) For all $x \in X, x \triangleright x=x$
(ii) For all $x, y \in X,(x \triangleright y) \triangleright y=x$
(iii) For all $x, y, z \in X,(x \triangleright y) \triangleright z=(x \triangleright z) \triangleright(y \triangleright z)$.

The term "kei" was coined by Mituhisa Takasaki in 1942. The second axiom says the function $\beta_{y}: X \rightarrow X$ defined by $\beta_{y}(x)=x \triangleright y$ is its own inverse.

Let X be a set. An operation \triangleright which takes two elements $x, y \in X$ and gives us back an element $x \triangleright y \in X$ is a Kei operation if it satisfies the following three axioms:
(i) For all $x \in X, x \triangleright x=x$
(ii) For all $x, y \in X,(x \triangleright y) \triangleright y=x$
(iii) For all $x, y, z \in X,(x \triangleright y) \triangleright z=(x \triangleright z) \triangleright(y \triangleright z)$.

The term "kei" was coined by Mituhisa Takasaki in 1942. The second axiom says
the function $\beta_{y}: X \rightarrow X$ defined by $\beta_{y}(x)=x \triangleright y$ is its own inverse.

In general, the Kei operation is nonassociative.

Connection of the three axioms to Knots

Each "color" or element of X corresponds to an arc in a diagram and the $x \triangleright y$ operation corresponds to one arc x passing under another arc y to become $x \triangleright y$.

Connection of the three axioms to Knots

Each "color" or element of X corresponds to an arc in a diagram and the $x \triangleright y$ operation corresponds to one arc x passing under another arc y to become $x \triangleright y$.

When x crosses under y, y is unchanged but $x \triangleright y$ is a new arc;

Connection of the three axioms to Knots

Each "color" or element of X corresponds to an arc in a diagram and the $x \triangleright y$ operation corresponds to one arc x passing under another arc y to become $x \triangleright y$.

When x crosses under y, y is unchanged but $x \triangleright y$ is a new arc; y is doing something to x, not the other way around.

Connection of the three axioms to Knots

Each "color" or element of X corresponds to an arc in a diagram and the $x \triangleright y$ operation corresponds to one arc x passing under another arc y to become $x \triangleright y$.

When x crosses under y, y is unchanged but $x \triangleright y$ is a new arc; y is doing something to x, not the other way around.

Connection of the three axioms to Knots (contd.)

Let's revisit the three Reidemeister moves.

Connection of the three axioms to Knots (contd.)

Let's revisit the three Reidemeister moves.
Kei axiom (i) follows from the type I Reidemeister move:

Connection of the three axioms to Knots (contd.)

Kei axiom (ii) follows from the type II Reidemeister move:

Connection of the three axioms to Knots (contd.)

Kei axiom (iii) follows from the type III Reidemeister move:

Including a choice of orientation for knots

Including a choice of orientation for knots (contd.)

Including a choice of orientation for knots (contd.)

The second Reidemeister move then says that \triangleright_{+}and \triangleright_{-}are inverse operations.

Including a choice of orientation for knots (contd.)

The second Reidemeister move then says that \triangleright_{+}and \triangleright_{-}are inverse operations.

Including a choice of orientation for knots (contd.)

We usually drop the + and write $x \triangleright y$ for $x \triangleright_{+} y$ and write $x \triangleright^{-1} y$ for $x D_{-} y$.

Including a choice of orientation for knots (contd.)

We usually drop the + and write $x \triangleright y$ for $x \triangleright_{+} y$ and write $x \triangleright^{-1} y$ for $x \triangleright_{-} y$.

Quandles

A quandle is a set X with a binary operation $\triangleright: X \times X \rightarrow X$ satisfying:
(i) For all $x \in X, x \triangleright x=x$
(ii) For all $y \in X$, the map $\beta_{y}: X \rightarrow X$ defined by $\beta_{y}(x)=x \triangleright y$ is invertible.
(iii) For all $x, y, z \in X,(x \triangleright y) \triangleright z=(x \triangleright z) \triangleright(y \triangleright z)$.

Quandles

A quandle is a set X with a binary operation $\triangleright: X \times X \rightarrow X$ satisfying:
(i) For all $x \in X, x \triangleright x=x$
(ii) For all $y \in X$, the map $\beta_{y}: X \rightarrow X$ defined by $\beta_{y}(x)=x \triangleright y$ is invertible.
(iii) For all $x, y, z \in X,(x \triangleright y) \triangleright z=(x \triangleright z) \triangleright(y \triangleright z)$.

We write $x \triangleright^{-1} y$ for $\beta_{y}^{-1}(x)$.

Quandles

A quandle is a set X with a binary operation $\triangleright: X \times X \rightarrow X$ satisfying:
(i) For all $x \in X, x \triangleright x=x$
(ii) For all $y \in X$, the map $\beta_{y}: X \rightarrow X$ defined by $\beta_{y}(x)=x \triangleright y$ is invertible.
(iii) For all $x, y, z \in X,(x \triangleright y) \triangleright z=(x \triangleright z) \triangleright(y \triangleright z)$.

We write $x \triangleright^{-1} y$ for $\beta_{y}^{-1}(x)$.
David Joyce and S.V. Matveev studied these structures independently in the 1980s.

Quandle Axioms and Reidemeister Moves

Quandle Axioms and Reidemeister Moves (contd.)

Examples of Quandles

Let $X=\mathbb{Z}$ or \mathbb{Z}_{n} and define

$$
x \triangleright y=2 y-x
$$

Axiom $1 x \triangleright x=2 x-x=x$

Examples of Quandles

Let $X=\mathbb{Z}$ or \mathbb{Z}_{n} and define

$$
x \triangleright y=2 y-x
$$

Axiom $1 x \triangleright x=2 x-x=x$
Axiom 2
$(x \triangleright y) \triangleright y=2 y-(x \triangleright y)=2 y-(2 y-x)=2 y-2 y+x=x$

Examples of Quandles

Let $X=\mathbb{Z}$ or \mathbb{Z}_{n} and define

$$
x \triangleright y=2 y-x
$$

Axiom $1 x \triangleright x=2 x-x=x$
Axiom 2
$(x \triangleright y) \triangleright y=2 y-(x \triangleright y)=2 y-(2 y-x)=2 y-2 y+x=x$
Axiom 3
$(x \triangleright y) \triangleright z=2 z-(x \triangleright y)=2 z-2 y+x$
$(x \triangleright z) \triangleright(y \triangleright z)=2(y \triangleright z)-(x \triangleright z)=2(2 z-y)-(2 z-x)=2 z-2 y+x$

Examples of Quandles

Let $X=\mathbb{Z}$ or \mathbb{Z}_{n} and define

$$
x \triangleright y=2 y-x
$$

Axiom $1 x \triangleright x=2 x-x=x$
Axiom 2
$(x \triangleright y) \triangleright y=2 y-(x \triangleright y)=2 y-(2 y-x)=2 y-2 y+x=x$
Axiom 3
$(x \triangleright y) \triangleright z=2 z-(x \triangleright y)=2 z-2 y+x$
$(x \triangleright z) \triangleright(y \triangleright z)=2(y \triangleright z)-(x \triangleright z)=2(2 z-y)-(2 z-x)=2 z-2 y+x$

This is called the Dihedral Quandle.

Examples of Quandles

Example 1 Let $X=\mathbb{Z}_{4}$ and define

$$
x \triangleright y=2 y-x
$$

Examples of Quandles

Example 1 Let $X=\mathbb{Z}_{4}$ and define

$$
x \triangleright y=2 y-x
$$

\triangleright	0	1	2	3
0	0	2	0	2
1	3	1	3	1
2	2	0	2	0
3	1	3	1	3

Examples of Quandles

Example 1 Let $X=\mathbb{Z}_{4}$ and define

$$
x \triangleright y=2 y-x
$$

\triangleright	0	1	2	3
0	0	2	0	2
1	3	1	3	1
2	2	0	2	0
3	1	3	1	3

The orbit of an element $x \in X$, denoted by $\operatorname{orb}(x)$, is the set of elements one can get to from x by quandle operations.

Examples of Quandles

Example 1 Let $X=\mathbb{Z}_{4}$ and define

$$
x \triangleright y=2 y-x
$$

\triangleright	0	1	2	3
0	0	2	0	2
1	3	1	3	1
2	2	0	2	0
3	1	3	1	3

The orbit of an element $x \in X$, denoted by orb (x), is the set of elements one can get to from x by quandle operations.
$\operatorname{orb}(0)=\operatorname{orb}(2)=\{0,2\}$ and $\operatorname{orb}(1)=\operatorname{orb}(3)=\{1,3\}$

More about Quandles

Connected Quandles A quandle X is connected if it has a single orbit.

More about Quandles

Connected Quandles A quandle X is connected if it has a single orbit.

A quandle is Latin if for each $a \in X$, the map $\lambda_{a}: X \rightarrow X$ defined by $\lambda_{a}(b)=a \triangleright b$ is a bijection.

More about Quandles

Connected Quandles A quandle X is connected if it has a single orbit.

A quandle is Latin if for each $a \in X$, the map $\lambda_{a}: X \rightarrow X$ defined by $\lambda_{a}(b)=a \triangleright b$ is a bijection. That is, X is Latin if the multiplication table of the quandle is a Latin square.

Examples of Quandles

Example 2 Any set X with the operation $x \triangleright y=x$ for all $x, y \in X$ is a quandle, called trivial quandle.

Examples of Quandles

Example 2 Any set X with the operation $x \triangleright y=x$ for all $x, y \in X$ is a quandle, called trivial quandle.

Example 3 Let \mathbb{F} be a field.

Examples of Quandles

Example 2 Any set X with the operation $x \triangleright y=x$ for all $x, y \in X$ is a quandle, called trivial quandle.

Example 3 Let \mathbb{F} be a field. Then $\mathrm{GL}_{n}(\mathbb{F})$ is a quandle with quandle operation

$$
A \triangleright B=B^{-1} A B
$$

Examples of Quandles

Example 2 Any set X with the operation $x \triangleright y=x$ for all $x, y \in X$ is a quandle, called trivial quandle.

Example 3 Let \mathbb{F} be a field. Then $\mathrm{GL}_{n}(\mathbb{F})$ is a quandle with quandle operation

$$
A \triangleright B=B^{-1} A B
$$

Example 4 More generally, let G be any group. Then G is a quandle under the operation of conjugation, i.e.

$$
x \triangleright y=y^{-1} x y
$$

Examples of Quandles

Let A be a module over $\Lambda=\mathbb{Z}\left[t^{ \pm}\right]$. Then A is a quandle under the operation

$$
\vec{x} \triangleright \vec{y}=t \vec{x}+(1-t) \vec{y}
$$

known as an Alexander quandle.

Examples of Quandles

Let A be a module over $\Lambda=\mathbb{Z}\left[t^{ \pm}\right]$. Then A is a quandle under the operation

$$
\vec{x} \triangleright \vec{y}=t \vec{x}+(1-t) \vec{y}
$$

known as an Alexander quandle.
Example 5 Any vector space V becomes an Alexander quandle when we select an invertible linear transformation $t: V \rightarrow V$ and define

$$
\vec{x} \triangleright \vec{y}=t \vec{x}+(I-t) \vec{y}
$$

where I is the identity matrix.

Examples of Quandles

Consider $V=\mathbb{R}^{2}$ and choose $t=\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]$
Then t is invertible with $t^{-1}=\left[\begin{array}{cc}3 & -2 \\ -1 & 1\end{array}\right]$ and $I-t=\left[\begin{array}{cc}0 & -2 \\ -1 & -2\end{array}\right]$;
Then we have quandle operation

Examples of Quandles

Consider $V=\mathbb{R}^{2}$ and choose $t=\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]$
Then t is invertible with $t^{-1}=\left[\begin{array}{cc}3 & -2 \\ -1 & 1\end{array}\right]$ and $I-t=\left[\begin{array}{cc}0 & -2 \\ -1 & -2\end{array}\right]$;
Then we have quandle operation

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \triangleright\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & -2 \\
-1 & -2
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

Examples of Quandles

Consider $V=\mathbb{R}^{2}$ and choose $t=\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]$
Then t is invertible with $t^{-1}=\left[\begin{array}{cc}3 & -2 \\ -1 & 1\end{array}\right]$ and $I-t=\left[\begin{array}{cc}0 & -2 \\ -1 & -2\end{array}\right]$;
Then we have quandle operation

$$
\begin{gathered}
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \triangleright\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & -2 \\
-1 & -2
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]} \\
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \triangleright\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+2 x_{2}-y_{2} \\
x_{1}+3 x_{2}-y_{1}-2 y_{2}
\end{array}\right]}
\end{gathered}
$$

Examples of Quandles

Example 5 The integers modulo n, \mathbb{Z}_{n}, form an Alexander quandle with the choice of any invertible element $t \in \mathbb{Z}_{n}$.

Examples of Quandles

Example 5 The integers modulo n, \mathbb{Z}_{n}, form an Alexander quandle with the choice of any invertible element $t \in \mathbb{Z}_{n}$.

Consider \mathbb{Z}_{3}.

Examples of Quandles

Example 5 The integers modulo n, \mathbb{Z}_{n}, form an Alexander quandle with the choice of any invertible element $t \in \mathbb{Z}_{n}$.

Consider \mathbb{Z}_{3}. We can choose $t=1$ or $t=2$.

Examples of Quandles

Example 5 The integers modulo n, \mathbb{Z}_{n}, form an Alexander quandle with the choice of any invertible element $t \in \mathbb{Z}_{n}$.

Consider \mathbb{Z}_{3}. We can choose $t=1$ or $t=2$. Then we have Alexander quandle operation

$$
\vec{x} \triangleright \vec{y}=t \vec{x}+(1-t) \vec{y}
$$

Examples of Quandles

Example 5 The integers modulo n, \mathbb{Z}_{n}, form an Alexander quandle with the choice of any invertible element $t \in \mathbb{Z}_{n}$.

Consider \mathbb{Z}_{3}. We can choose $t=1$ or $t=2$. Then we have Alexander quandle operation

$$
\vec{x} \triangleright \vec{y}=t \vec{x}+(1-t) \vec{y}
$$

$x \triangleright y=x$					$x \triangleright y=2 x+2 y$			
\triangleright	0	1	2					
0	0	0	0		\triangleright	0	1	2
1	1	1	1		0	2	1	2
	1	0						
2	2	2	2		2	1	0	2

Examples of Quandles

Let $\Lambda_{n}=\mathbb{Z}_{n}\left[t^{ \pm}\right]$.

Examples of Quandles

$$
\text { Let } \Lambda_{n}=\mathbb{Z}_{n}\left[t^{ \pm}\right] \text {. }
$$

Example 6 Alexander quandle

$$
A=\Lambda_{3} /\left(2+t+t^{2}\right)
$$

Examples of Quandles

Let $\Lambda_{n}=\mathbb{Z}_{n}\left[t^{ \pm}\right]$.

Example 6 Alexander quandle

$$
A=\Lambda_{3} /\left(2+t+t^{2}\right)
$$

Here $2+t+t^{2}=0$ which implies $t^{2}=-2-t=1+2 t$.

Examples of Quandles

$$
\text { Let } \Lambda_{n}=\mathbb{Z}_{n}\left[t^{ \pm}\right] \text {. }
$$

Example 6 Alexander quandle

$$
A=\Lambda_{3} /\left(2+t+t^{2}\right)
$$

Here $2+t+t^{2}=0$ which implies $t^{2}=-2-t=1+2 t$. Then the elements of A are

$$
\{0,1,2, t, 1+t, 2+t, 2 t, 1+2 t, 2+2 t\}
$$

Examples of Quandles

Let $\Lambda_{n}=\mathbb{Z}_{n}\left[t^{ \pm}\right]$.
Example 6 Alexander quandle

$$
A=\Lambda_{3} /\left(2+t+t^{2}\right)
$$

Here $2+t+t^{2}=0$ which implies $t^{2}=-2-t=1+2 t$. Then the elements of A are

$$
\{0,1,2, t, 1+t, 2+t, 2 t, 1+2 t, 2+2 t\}
$$

For example,

$$
(1+t) \triangleright 2 t=t(1+t)+(1-t)(2 t)=1+t
$$

Racks

A rack is a generalization of a quandle.

Racks

A rack is a generalization of a quandle.
A rack is a set X with a binary operation $\triangleright: X \times X \rightarrow X$ satisfying:
(i) For all $y \in X$, the map $\beta_{y}: X \rightarrow X$ defined by $\beta_{y}(x)=x \triangleright y$ is invertible.
(ii) For all $x, y, z \in X,(x \triangleright y) \triangleright z=(x \triangleright z) \triangleright(y \triangleright z)$.

Racks

A rack is a generalization of a quandle.
A rack is a set X with a binary operation $\triangleright: X \times X \rightarrow X$ satisfying:
(i) For all $y \in X$, the map $\beta_{y}: X \rightarrow X$ defined by $\beta_{y}(x)=x \triangleright y$ is invertible.
(ii) For all $x, y, z \in X,(x \triangleright y) \triangleright z=(x \triangleright z) \triangleright(y \triangleright z)$.

The set of Quandles \subset The set of Racks

Quandle Rings

V.G. Bardakov, I.B.S. Passi, and M. Singh, Quandle rings, J. Algebra Appl. (2019)

Quandle Rings

V.G. Bardakov, I.B.S. Passi, and M. Singh, Quandle rings, J. Algebra Appl. (2019)

Let X be a rack and R an associative ring with unity. They introduced the rack ring $R[X]$, a nonassociative ring, of X with coefficients in R.

$$
R[X]:=\left\{\sum_{i} \alpha_{i} x_{i} \mid \alpha_{i} \in R, x_{i} \in X\right\}
$$

Quandle Rings

V.G. Bardakov, I.B.S. Passi, and M. Singh, Quandle rings, J. Algebra Appl. (2019)

Let X be a rack and R an associative ring with unity. They introduced the rack ring $R[X]$, a nonassociative ring, of X with coefficients in R.

$$
R[X]:=\left\{\sum_{i} \alpha_{i} x_{i} \mid \alpha_{i} \in R, x_{i} \in X\right\}
$$

Mohamed Elhamdadi, Boris Tsvelikhovskiy, N.F., Ring theoretic aspects of quandles. Journal of Algebra (2019)

Shelves

A shelf is a generalization of a rack.

Shelves

A shelf is a generalization of a rack.
A shelf is a set X with a binary operation $\triangleright: X \times X \rightarrow X$ satisfying:

$$
\text { For all } x, y, z \in X,(x \triangleright y) \triangleright z=(x \triangleright z) \triangleright(y \triangleright z) \text {. }
$$

Shelves

A shelf is a generalization of a rack.
A shelf is a set X with a binary operation $\triangleright: X \times X \rightarrow X$ satisfying:

$$
\text { For all } x, y, z \in X,(x \triangleright y) \triangleright z=(x \triangleright z) \triangleright(y \triangleright z) \text {. }
$$

The set of Quandles \subset The set of Racks \subset The set of Shelves

Shelves

A shelf is a generalization of a rack.
A shelf is a set X with a binary operation $\triangleright: X \times X \rightarrow X$ satisfying:

$$
\text { For all } x, y, z \in X,(x \triangleright y) \triangleright z=(x \triangleright z) \triangleright(y \triangleright z) \text {. }
$$

The set of Quandles \subset The set of Racks \subset The set of Shelves
Matthew Pradeep Goonewardena, Mohamed Elhamdadi and N.F., Isomorphism classes of shelves (soon to be submitted)

Example of a Shelf

Let $X=\mathbb{Z}_{4}$ and $x \triangleright y=x+2 y$ for all $x, y \in X$. Then $\left(\mathbb{Z}_{4}, *\right)$ is a shelf of order 4 .

\triangleright	0	1	2	3
0	0	1	2	3
1	2	3	1	3
2	0	0	2	0
3	2	1	3	1

Number of Connected Racks and Quandles

n	number of connected racks	number of connected quandles
1	1	1
2	1	0
3	2	1
4	2	1
5	4	3

Thank you!

Neranga Fernando

Quandles, racks and shelves

