Quandles, racks and shelves

Neranga Fernando

Department of Mathematics and Computer Science College of the Holy Cross Worcester, MA 01610

October 14, 2022

Neranga Fernando Quandles, racks and shelves

★ 문 ► ★ 문 ►

Neranga Fernando Quandles, racks and shelves

<ロ> <四> <ヨ> <ヨ>

2

A knot is a simple, closed curve

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

æ

A knot is a simple, closed curve, where "simple" means the curve does not intersect itself and "closed" means there are no loose ends.

臣

A knot is a simple, closed curve, where "simple" means the curve does not intersect itself and "closed" means there are no loose ends.

We usually think of knots in three-dimensional space.

Introduction (contd.)

Knot Diagram

・ロト ・四ト ・ヨト・

æ

Knot Diagram

A *knot diagram* is a projection or shadow of a knot on a plane where we indicate which strand passes over and which passes under at apparent crossing points by drawing the understrand broken.

Knot Diagram

A *knot diagram* is a projection or shadow of a knot on a plane where we indicate which strand passes over and which passes under at apparent crossing points by drawing the understrand broken.

Introduction (contd.)

A knot is called **tame** if it has a diagram with a finite number of crossing points.

Image: A Image: A

臣

A knot is called **tame** if it has a diagram with a finite number of crossing points.

Two knots K_0 and K_1 have the same knot type if we can move K_0 around in space in a continuous way, i.e. without cutting or tearing the knot, to match up K_0 with K_1 .

A knot is called **tame** if it has a diagram with a finite number of crossing points.

Two knots K_0 and K_1 have the same knot type if we can move K_0 around in space in a continuous way, i.e. without cutting or tearing the knot, to match up K_0 with K_1 .

 k_0 is ambient isotopic to K_1 if there is a continuous map

$$H : \mathbb{R}^3 \times [0,1] \to \mathbb{R}^3$$

such that $H(K_0, 0) = K_0$, $H(K_0, 1) = K_1$ and H(x, t) is injective for every $t \in [0, 1]$.

向下 イヨト イヨト

A knot is called **tame** if it has a diagram with a finite number of crossing points.

Two knots K_0 and K_1 have the same knot type if we can move K_0 around in space in a continuous way, i.e. without cutting or tearing the knot, to match up K_0 with K_1 .

 k_0 is ambient isotopic to K_1 if there is a continuous map

$$H : \mathbb{R}^3 \times [0,1] \to \mathbb{R}^3$$

such that $H(K_0, 0) = K_0$, $H(K_0, 1) = K_1$ and H(x, t) is injective for every $t \in [0, 1]$.

Such a map is called an *ambient isotopy*.

In 1926, Kurt Reidemeister introduced a method to determine whether two given knot diagrams, K_0 and K_1 , are ambient isotopic.

(E) (E)

In 1926, Kurt Reidemeister introduced a method to determine whether two given knot diagrams, K_0 and K_1 , are ambient isotopic.

Two knot diagrams, K_0 and K_1 , represent the same knot type, if we can identify an explicit sequence of three moves taking K_0 to K_1 , In 1926, Kurt Reidemeister introduced a method to determine whether two given knot diagrams, K_0 and K_1 , are ambient isotopic.

Two knot diagrams, K_0 and K_1 , represent the same knot type, if we can identify an explicit sequence of three moves taking K_0 to K_1 , and these moves are now called **Reidemeister moves**.

Reidemeister moves

A **knot invariant** is a function $f : \mathcal{K} \to X$ from the set of all knot diagrams to a set X such that for each Reidemeister move, we have

$$f(K_1)=f(K_2)$$

where K_1 is the knot diagram before the move and K_2 is the same diagram after the move.

A **knot invariant** is a function $f : \mathcal{K} \to X$ from the set of all knot diagrams to a set X such that for each Reidemeister move, we have

$$f(K_1)=f(K_2)$$

where K_1 is the knot diagram before the move and K_2 is the same diagram after the move.

If f is a knot invariant, then any two diagrams related by Reidemeister moves must give the same value when we evaluate f. **Crossing Number** - The minimal number of crossings in any diagram of K.

・ 回 ト ・ ヨ ト ・ ヨ ト …

臣

Crossing Number - The minimal number of crossings in any diagram of K. This is an example of a geometric invariant.

• • = • • = •

• • = • • = •

Computable Knot Invariants

(A) (E) (A) (E) (A)

Computable Knot Invariants

The Jones Polynomial - A discovery by Vaughan Jones in 1984

(E) (E)

Computable Knot Invariants

The Jones Polynomial - A discovery by Vaughan Jones in 1984

Fox Tricoloring - Introduced by Ralph Fox in the 1950s

A B K A B K

Computable Knot Invariants

The Jones Polynomial - A discovery by Vaughan Jones in 1984

Fox Tricoloring - Introduced by Ralph Fox in the 1950s

A **tricoloring** of a knot diagram is a choice of color for each arc in the diagram from a set of three colors.

▶ ★ E ▶ ★ E ▶

Fox Tricoloring

A tricoloring is **valid** if at every crossing we either have all three colors the same or all three colors different.

Fox Tricoloring

A tricoloring is **valid** if at every crossing we either have all three colors the same or all three colors different.

A valid tricoloring is **nontrivial** if it uses all three colors.

Fox Tricoloring

A tricoloring is **valid** if at every crossing we either have all three colors the same or all three colors different.

A valid tricoloring is **nontrivial** if it uses all three colors.

Figure-eight knot

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

æ

Not tri-colorable

・ロト ・四ト ・ヨト ・ヨト

æ

(i) For all $x \in X$, $x \triangleright x = x$

(i) For all
$$x \in X$$
, $x \triangleright x = x$
(ii) For all $x, y \in X$, $(x \triangleright y) \triangleright y = x$

.

(i) For all
$$x \in X$$
, $x \triangleright x = x$

(ii) For all
$$x, y \in X$$
, $(x \triangleright y) \triangleright y = x$

(iii) For all
$$x, y, z \in X$$
, $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$.

The term "kei" was coined by Mituhisa Takasaki in 1942.

(i) For all
$$x \in X$$
, $x \triangleright x = x$

(ii) For all
$$x, y \in X$$
, $(x \triangleright y) \triangleright y = x$

(iii) For all
$$x, y, z \in X$$
, $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$.

The term "kei" was coined by Mituhisa Takasaki in 1942. The second axiom says

Let X be a set. An operation \triangleright which takes two elements $x, y \in X$ and gives us back an element $x \triangleright y \in X$ is a **Kei operation** if it satisfies the following three axioms:

(i) For all
$$x \in X$$
, $x \triangleright x = x$

(ii) For all
$$x, y \in X$$
, $(x \triangleright y) \triangleright y = x$

(iii) For all
$$x, y, z \in X$$
, $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$.

The term "kei" was coined by Mituhisa Takasaki in 1942. The second axiom says

the function $\beta_y : X \to X$ defined by $\beta_y(x) = x \triangleright y$ is its own inverse.

• • = • • = •

Let X be a set. An operation \triangleright which takes two elements $x, y \in X$ and gives us back an element $x \triangleright y \in X$ is a **Kei operation** if it satisfies the following three axioms:

(i) For all
$$x \in X$$
, $x \triangleright x = x$

(ii) For all
$$x, y \in X$$
, $(x \triangleright y) \triangleright y = x$

(iii) For all
$$x, y, z \in X$$
, $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$.

The term "kei" was coined by Mituhisa Takasaki in 1942. The second axiom says

the function $\beta_y : X \to X$ defined by $\beta_y(x) = x \triangleright y$ is its own inverse.

In general, the Kei operation is *nonassociative*.

Each "color" or element of X corresponds to an arc in a diagram and the $x \triangleright y$ operation corresponds to one arc x passing under another arc y to become $x \triangleright y$.

Each "color" or element of X corresponds to an arc in a diagram and the $x \triangleright y$ operation corresponds to one arc x passing under another arc y to become $x \triangleright y$.

When x crosses under y, y is unchanged but $x \triangleright y$ is a new arc;

Each "color" or element of X corresponds to an arc in a diagram and the $x \triangleright y$ operation corresponds to one arc x passing under another arc y to become $x \triangleright y$.

When x crosses under y, y is unchanged but $x \triangleright y$ is a new arc; y is doing something to x, not the other way around.

Each "color" or element of X corresponds to an arc in a diagram and the $x \triangleright y$ operation corresponds to one arc x passing under another arc y to become $x \triangleright y$.

When x crosses under y, y is unchanged but $x \triangleright y$ is a new arc; y is doing something to x, not the other way around.

Let's revisit the three Reidemeister moves.

Let's revisit the three Reidemeister moves.

Kei axiom (i) follows from the type I Reidemeister move:

Kei axiom (ii) follows from the type II Reidemeister move:

Kei axiom (iii) follows from the type III Reidemeister move:

・ 回 ト ・ ヨ ト ・ ヨ ト

The second Reidemeister move then says that \triangleright_+ and \triangleright_- are inverse operations.

The second Reidemeister move then says that \triangleright_+ and \triangleright_- are inverse operations.

We usually drop the + and write $x \triangleright y$ for $x \triangleright_+ y$ and write $x \triangleright^{-1} y$ for $x \triangleright_- y$.

Image: A Image: A

We usually drop the + and write $x \triangleright y$ for $x \triangleright_+ y$ and write $x \triangleright^{-1} y$ for $x \triangleright_- y$.

A *quandle* is a set X with a binary operation $\triangleright : X \times X \rightarrow X$ satisfying:

- (i) For all $x \in X$, $x \triangleright x = x$
- (ii) For all $y \in X$, the map $\beta_y : X \to X$ defined by $\beta_y(x) = x \triangleright y$ is invertible.
- (iii) For all $x, y, z \in X$, $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$.

向下 イヨト イヨト

A *quandle* is a set X with a binary operation $\triangleright : X \times X \rightarrow X$ satisfying:

- (i) For all $x \in X$, $x \triangleright x = x$
- (ii) For all $y \in X$, the map $\beta_y : X \to X$ defined by $\beta_y(x) = x \triangleright y$ is invertible.
- (iii) For all $x, y, z \in X$, $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$.

We write $x \triangleright^{-1} y$ for $\beta_y^{-1}(x)$.

向下 イヨト イヨト

A *quandle* is a set X with a binary operation $\triangleright : X \times X \rightarrow X$ satisfying:

- (i) For all $x \in X$, $x \triangleright x = x$
- (ii) For all $y \in X$, the map $\beta_y : X \to X$ defined by $\beta_y(x) = x \triangleright y$ is invertible.

(iii) For all
$$x, y, z \in X$$
, $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$.

We write $x \triangleright^{-1} y$ for $\beta_y^{-1}(x)$.

David Joyce and S.V. Matveev studied these structures independently in the 1980s.

A B K A B K

Quandle Axioms and Reidemeister Moves

Quandle Axioms and Reidemeister Moves (contd.)

Let $X = \mathbb{Z}$ or \mathbb{Z}_n and define

$$x \triangleright y = 2y - x.$$

Axiom 1 $x \triangleright x = 2x - x = x$

・日・ ・ ヨ・ ・ ヨ・

臣

Let $X = \mathbb{Z}$ or \mathbb{Z}_n and define

$$x \triangleright y = 2y - x.$$

Axiom 1 $x \triangleright x = 2x - x = x$

Axiom 2

 $(x \triangleright y) \triangleright y = 2y - (x \triangleright y) = 2y - (2y - x) = 2y - 2y + x = x$

・ 回 ト ・ ヨ ト ・ ヨ ト

2

Let $X = \mathbb{Z}$ or \mathbb{Z}_n and define

$$x \triangleright y = 2y - x.$$

Axiom 1 $x \triangleright x = 2x - x = x$

Axiom 2 $(x \triangleright y) \triangleright y = 2y - (x \triangleright y) = 2y - (2y - x) = 2y - 2y + x = x$

Axiom 3 $(x \triangleright y) \triangleright z = 2z - (x \triangleright y) = 2z - 2y + x$ $(x \triangleright z) \triangleright (y \triangleright z) = 2(y \triangleright z) - (x \triangleright z) = 2(2z - y) - (2z - x) = 2z - 2y + x$

・ロト ・回ト ・ヨト ・ヨト … ヨ

Let $X = \mathbb{Z}$ or \mathbb{Z}_n and define

$$x \triangleright y = 2y - x.$$

Axiom 1 $x \triangleright x = 2x - x = x$

Axiom 2 $(x \triangleright y) \triangleright y = 2y - (x \triangleright y) = 2y - (2y - x) = 2y - 2y + x = x$

Axiom 3 $(x \triangleright y) \triangleright z = 2z - (x \triangleright y) = 2z - 2y + x$ $(x \triangleright z) \triangleright (y \triangleright z) = 2(y \triangleright z) - (x \triangleright z) = 2(2z - y) - (2z - x) = 2z - 2y + x$

This is called the **Dihedral Quandle**.

・ロト ・回ト ・ヨト ・ヨト - ヨ

Example 1 Let $X = \mathbb{Z}_4$ and define

$$x \triangleright y = 2y - x.$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

臣

Example 1 Let $X = \mathbb{Z}_4$ and define

$$x \triangleright y = 2y - x.$$

\triangleright	0	1	2	3
0	0	2	0	2
1	3	1	3	1
2	2	0	2	0
3	1	2 1 0 3	1	3

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

크

Example 1 Let $X = \mathbb{Z}_4$ and define

$$x \triangleright y = 2y - x.$$

\triangleright	0	1	2	3
0	0	2	0	2
1	3	1	3	1
2	2	0	2	0
3	1	2 1 0 3	1	3

The orbit of an element $x \in X$, denoted by $\operatorname{orb}(x)$, is the set of elements one can get to from x by quandle operations.

同ト・モト・モト

Example 1 Let $X = \mathbb{Z}_4$ and define

$$x \triangleright y = 2y - x.$$

\triangleright	0	1	2	3
0	0	2	0	2
1	3	1	3	1
2	2	0	2	0
3	1	2 1 0 3	1	3

The orbit of an element $x \in X$, denoted by $\operatorname{orb}(x)$, is the set of elements one can get to from x by quandle operations.

$$orb(0) = orb(2) = \{0, 2\}$$
 and $orb(1) = orb(3) = \{1, 3\}$

同ト・モト・モト

Connected Quandles A quandle X is *connected* if it has a single orbit.

> < E > < E > 。

臣

Connected Quandles A quandle *X* is *connected* if it has a single orbit.

A quandle is **Latin** if for each $a \in X$, the map $\lambda_a : X \to X$ defined by $\lambda_a(b) = a \triangleright b$ is a bijection.

• • = • • = •

Connected Quandles A quandle *X* is *connected* if it has a single orbit.

A quandle is **Latin** if for each $a \in X$, the map $\lambda_a : X \to X$ defined by $\lambda_a(b) = a \triangleright b$ is a bijection. That is, X is Latin if the multiplication table of the quandle is a **Latin square**.

• • = • • = •

・ 回 ト ・ ヨ ト ・ ヨ ト

Example 3 Let \mathbb{F} be a field.

Image: A Image: A

Example 3 Let \mathbb{F} be a field. Then $GL_n(\mathbb{F})$ is a quandle with quandle operation

 $A \triangleright B = B^{-1}AB$

伺 ト イヨト イヨト

Example 3 Let \mathbb{F} be a field. Then $GL_n(\mathbb{F})$ is a quandle with quandle operation

$$A \triangleright B = B^{-1}AB$$

Example 4 More generally, let G be any group. Then G is a quandle under the operation of conjugation, i.e.

$$x \triangleright y = y^{-1}xy$$

同 ト イヨト イヨト

Let A be a module over $\Lambda = \mathbb{Z}[t^{\pm}]$. Then A is a quandle under the operation

$$\vec{x} \triangleright \vec{y} = t\vec{x} + (1-t)\vec{y}$$

known as an Alexander quandle.

★ E ► ★ E ►

Let A be a module over $\Lambda = \mathbb{Z}[t^{\pm}]$. Then A is a quandle under the operation

$$\vec{x} \triangleright \vec{y} = t\vec{x} + (1-t)\vec{y}$$

known as an Alexander quandle.

Example 5 Any vector space V becomes an Alexander quandle when we select an invertible linear transformation $t : V \rightarrow V$ and define

$$\vec{x} \triangleright \vec{y} = t\vec{x} + (I - t)\vec{y}$$

where I is the identity matrix.

Consider
$$V = \mathbb{R}^2$$
 and choose $t = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$
Then t is invertible with $t^{-1} = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}$ and $I - t = \begin{bmatrix} 0 & -2 \\ -1 & -2 \end{bmatrix}$;

Then we have quandle operation

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

Consider
$$V = \mathbb{R}^2$$
 and choose $t = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$
Then t is invertible with $t^{-1} = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}$ and $I - t = \begin{bmatrix} 0 & -2 \\ -1 & -2 \end{bmatrix}$;

Then we have quandle operation

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \triangleright \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 & -2 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

► ★ Ξ ► ★ Ξ ►

Consider
$$V = \mathbb{R}^2$$
 and choose $t = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$
Then t is invertible with $t^{-1} = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}$ and $I - t = \begin{bmatrix} 0 & -2 \\ -1 & -2 \end{bmatrix}$;

Then we have quandle operation

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \triangleright \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 & -2 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \triangleright \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + 2x_2 - y_2 \\ x_1 + 3x_2 - y_1 - 2y_2 \end{bmatrix}$$

> < E > < E >

Example 5 The integers modulo n, \mathbb{Z}_n , form an Alexander quandle with the choice of any invertible element $t \in \mathbb{Z}_n$.

> < E > < E >

Example 5 The integers modulo n, \mathbb{Z}_n , form an Alexander quandle with the choice of any invertible element $t \in \mathbb{Z}_n$.

Consider \mathbb{Z}_3 .

> < E > < E > 。

Example 5 The integers modulo n, \mathbb{Z}_n , form an Alexander quandle with the choice of any invertible element $t \in \mathbb{Z}_n$.

Consider \mathbb{Z}_3 . We can choose t = 1 or t = 2.

• • = • • = •

Example 5 The integers modulo n, \mathbb{Z}_n , form an Alexander quandle with the choice of any invertible element $t \in \mathbb{Z}_n$.

Consider \mathbb{Z}_3 . We can choose t = 1 or t = 2. Then we have Alexander quandle operation

$$\vec{x} \triangleright \vec{y} = t\vec{x} + (1-t)\vec{y}$$

• • = • • = •

Example 5 The integers modulo n, \mathbb{Z}_n , form an Alexander quandle with the choice of any invertible element $t \in \mathbb{Z}_n$.

Consider \mathbb{Z}_3 . We can choose t = 1 or t = 2. Then we have Alexander guandle operation

$$\vec{x} \triangleright \vec{y} = t\vec{x} + (1-t)\vec{y}$$

伺 ト イヨト イヨト

Let
$$\Lambda_n = \mathbb{Z}_n[t^{\pm}]$$
.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

æ

Let $\Lambda_n = \mathbb{Z}_n[t^{\pm}]$.

Example 6 Alexander quandle

$$A = \Lambda_3/(2+t+t^2)$$

回とくほとくほと

Let $\Lambda_n = \mathbb{Z}_n[t^{\pm}]$.

Example 6 Alexander quandle

$$A = \Lambda_3/(2+t+t^2)$$

Here $2 + t + t^2 = 0$ which implies $t^2 = -2 - t = 1 + 2t$.

回 とうほう うほとう

Let $\Lambda_n = \mathbb{Z}_n[t^{\pm}]$.

Example 6 Alexander quandle

$$A = \Lambda_3/(2+t+t^2)$$

Here $2 + t + t^2 = 0$ which implies $t^2 = -2 - t = 1 + 2t$. Then the elements of *A* are

$$\{0, 1, 2, t, 1 + t, 2 + t, 2t, 1 + 2t, 2 + 2t\}$$

伺 ト イヨト イヨト

Let $\Lambda_n = \mathbb{Z}_n[t^{\pm}]$.

Example 6 Alexander quandle

$$A = \Lambda_3/(2+t+t^2)$$

Here $2 + t + t^2 = 0$ which implies $t^2 = -2 - t = 1 + 2t$. Then the elements of *A* are

$$\{0, 1, 2, t, 1+t, 2+t, 2t, 1+2t, 2+2t\}$$

For example,

$$(1+t) \triangleright 2t = t(1+t) + (1-t)(2t) = 1+t$$

• • = • • = •

A **rack** is a generalization of a quandle.

ヘロト 人間 とくほど 人間とう

æ

A rack is a generalization of a quandle.

A *rack* is a set X with a binary operation \triangleright : $X \times X \rightarrow X$ satisfying:

- (i) For all $y \in X$, the map $\beta_y : X \to X$ defined by $\beta_y(x) = x \triangleright y$ is invertible.
- (ii) For all $x, y, z \in X$, $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$.

A rack is a generalization of a quandle.

A rack is a set X with a binary operation \triangleright : $X \times X \rightarrow X$ satisfying:

- (i) For all $y \in X$, the map $\beta_y : X \to X$ defined by $\beta_y(x) = x \triangleright y$ is invertible.
- (ii) For all $x, y, z \in X$, $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$.

The set of Quandles \subset The set of Racks

V.G. Bardakov, I.B.S. Passi, and M. Singh, **Quandle rings**, J. Algebra Appl. (2019)

> < 도 > < 도 >

V.G. Bardakov, I.B.S. Passi, and M. Singh, **Quandle rings**, J. Algebra Appl. (2019)

Let X be a rack and R an associative ring with unity. They introduced the rack ring R[X], a nonassociative ring, of X with coefficients in R.

$$R[X] := \left\{ \sum_{i} \alpha_{i} x_{i} \mid \alpha_{i} \in R, \, x_{i} \in X \right\}$$

(A) (E) (A) (E) (A)

V.G. Bardakov, I.B.S. Passi, and M. Singh, **Quandle rings**, J. Algebra Appl. (2019)

Let X be a rack and R an associative ring with unity. They introduced the rack ring R[X], a nonassociative ring, of X with coefficients in R.

$$R[X] := \left\{ \sum_{i} \alpha_{i} x_{i} \mid \alpha_{i} \in R, \, x_{i} \in X \right\}$$

Mohamed Elhamdadi, Boris Tsvelikhovskiy, N.F., **Ring theoretic** aspects of quandles. Journal of Algebra (2019)

向下 イヨト イヨト

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

æ

A *shelf* is a set X with a binary operation \triangleright : $X \times X \rightarrow X$ satisfying:

For all
$$x, y, z \in X$$
, $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$.

> < E > < E >

A *shelf* is a set X with a binary operation \triangleright : $X \times X \rightarrow X$ satisfying:

For all
$$x, y, z \in X$$
, $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$.

The set of Quandles \subset The set of Racks \subset The set of Shelves

A *shelf* is a set X with a binary operation \triangleright : $X \times X \rightarrow X$ satisfying:

For all
$$x, y, z \in X$$
, $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$.

The set of Quandles \subset The set of Racks \subset The set of Shelves

Matthew Pradeep Goonewardena, Mohamed Elhamdadi and N.F., **Isomorphism classes of shelves** (soon to be submitted)

(A) (E) (A) (E) (A)

Let $X = \mathbb{Z}_4$ and $x \triangleright y = x + 2y$ for all $x, y \in X$. Then $(\mathbb{Z}_4, *)$ is a shelf of order 4.

\triangleright		1	2	3
0	0	1	2	3
1	2	3	1	3
2	0	0	2 2 1 2	0
3	0 2 0 2	1	3	1

同ト・モト・モト

n	number of connected racks	number of connected quandles
1	1	1
2	1	0
3	2	1
4	2	1
5	4	3

> < E > < E >

Thank you!

<ロ> <四> <ヨ> <ヨ>

Ð,