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Introduction

Knots

A knot is a simple, closed curve, where “simple” means the curve
does not intersect itself and “closed” means there are no loose
ends.

We usually think of knots in three-dimensional space.
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Introduction (contd.)

Knot Diagram

A knot diagram is a projection or shadow of a knot on a plane
where we indicate which strand passes over and which passes under
at apparent crossing points by drawing the understrand broken.
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Introduction (contd.)

A knot is called tame if it has a diagram with a finite number of
crossing points.

Two knots K0 and K1 have the same knot type if we can move K0

around in space in a continuous way, i.e. without cutting or tearing
the knot, to match up K0 with K1.

k0 is ambient isotopic to K1 if there is a continuous map

H : R3 × [0, 1]→ R3

such that H(K0, 0) = K0, H(K0, 1) = K1 and H(x , t) is injective
for every t ∈ [0, 1].

Such a map is called an ambient isotopy.
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Introduction (contd.)

In 1926, Kurt Reidemeister introduced a method to determine
whether two given knot diagrams, K0 and K1, are ambient isotopic.

Two knot diagrams, K0 and K1, represent the same knot type, if
we can identify an explicit sequence of three moves taking K0 to
K1, and these moves are now called Reidemeister moves.
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Reidemeister moves

10 Knots and Links

The first question was answered in the 1920s by by Kurt Rei-

demeister. A local move on a knot diagram involves replacing one

portion of the diagram inside a small disk with something else, while

the rest of the diagram outside the disk remains unchanged. A planar

isotopy is a local move which replaces a strand without crossings with

another strand without crossings with the same endpoints.

⇠

In 1926, Kurt Reidemeister and independently, in 1927, J. W.

Alexander and G. B. Briggs proved that two tame knot diagrams K0

and K1 are ambient isotopic if and only if one can be changed into

the other by a finite sequence of planar isotopies and moves of the

following three types:

If you look closely, you’ll find that some other similar moves are

implied by the listed moves. For example, move III says you can move
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Knot Invariants

A knot invariant is a function f : K → X from the set of all knot
diagrams to a set X such that for each Reidemeister move, we have

f (K1) = f (K2)

where K1 is the knot diagram before the move and K2 is the same
diagram after the move.

If f is a knot invariant, then any two diagrams related by
Reidemeister moves must give the same value when we evaluate f .
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Knot Invariants (contd.)

Crossing Number - The minimal number of crossings in any
diagram of K .

This is an example of a geometric invariant.
Generally hard to compute.

Computable Knot Invariants

The Jones Polynomial - A discovery by Vaughan Jones in 1984

Fox Tricoloring - Introduced by Ralph Fox in the 1950s

A tricoloring of a knot diagram is a choice of color for each arc in
the diagram from a set of three colors.
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Fox Tricoloring

A tricoloring is valid if at every crossing we either have all three
colors the same or all three colors different.

A valid tricoloring is nontrivial if it uses all three colors.
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Figure-eight knot

Not tri-colorable
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Kei

Let X be a set. An operation . which takes two elements x , y ∈ X
and gives us back an element x . y ∈ X is a Kei operation if it
satisfies the following three axioms:

(i) For all x ∈ X , x . x = x

(ii) For all x , y ∈ X , (x . y) . y = x

(iii) For all x , y , z ∈ X , (x . y) . z = (x . z) . (y . z).

The term “kei” was coined by Mituhisa Takasaki in 1942. The
second axiom says

the function βy : X → X defined by βy (x) = x . y is its own
inverse.

In general, the Kei operation is nonassociative.
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Connection of the three axioms to Knots

Each “color” or element of X corresponds to an arc in a diagram
and the x . y operation corresponds to one arc x passing under
another arc y to become x . y .

When x crosses under y , y is unchanged but x . y is a new arc; y
is doing something to x , not the other way around.
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Connection of the three axioms to Knots (contd.)

Let’s revisit the three Reidemeister moves.

Kei axiom (i) follows from the type I Reidemeister move:

Kei 75

Kei axiom (i) follows from the type I Reidemeister move:

Kei axiom (ii) follows from the type II Reidemeister move:

Kei axiom (iii) follows from the type III Reidemeister move:

The term “kei” was chosen by Mituhisa Takasaki [Tak42].

Example 54. Perhaps the simplest nontrivial example of a kei op-

eration is known as a Takasaki kei , also sometimes called a cyclic kei

or dihedral quandle. Let X = Z or Zn and define

x . y = 2y � x.

To see that this . is a kei operation, we just need to verify that all

three kei axioms are satisfied:

(i)

x . x = 2x� x = x X
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Connection of the three axioms to Knots (contd.)

Kei axiom (ii) follows from the type II Reidemeister move:
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Connection of the three axioms to Knots (contd.)

Kei axiom (iii) follows from the type III Reidemeister move:

Kei 75
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Including a choice of orientation for knots

12 Knots and Links

moves and planar isotopies.

Combinatorial Oriented Knots. Introducing an orientation on

our knot diagrams gives us two kinds of crossings, which we identify

as “positive” and “negative” depending on whether the understrand is

directed right-to-left or left-to-right when viewed from the overstrand.

We will denote the sign of a crossing C as ✏(C) = ±1.

Including orientations means we now have more Reidemeister

moves than we did before. Instead of two type I moves, we now

have four; one type II becomes four – two direct moves where the

strands are oriented in the same direction, and reverse moves where

the strands are oriented in opposite directions, and there are eight

oriented type III moves.

In practice, many of the moves are implied by the other moves.

Indeed, it is an interesting exercise to find a minimal generating set of

moves, i.e. a subset containing as few moves as possible from which

all of the other oriented moves can be recovered.

The sum of all the crossing signs is a quantity known as the

writhe of the diagram; writhe is a property of diagrams, not of knots,

since starting with a given knot diagram we can adjust the writhe

to whatever we want using type I moves. For links, each component

has its own writhe determined by counting only crossings where the

component crosses itself; multi-component crossings do not contribute

to the component writhes.
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Including a choice of orientation for knots (contd.)

88 Quandles

a negative crossing.

The second Reidemeister move then says that .+ and .� are

inverse operations, like addition and subtraction or multiplication and

division.

More precisely, we have

(x .+ y) .� y = x = (x .� y) .+ y.

We usually drop the + and write x.y for x.+ y and write x.�1 y

for x .� y.

We can also think about this from an algebraic point of view.

The second kei axiom says

(x . y) . y = x.

For each fixed element y in X, let us define a function �y : X ! X by

setting �y(x) = x . y. Then the second kei axiom says �y(�y(x)) = x.

That is, the function �y is its own inverse function, ��1
y = �y. A
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Including a choice of orientation for knots (contd.)
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That is, the function �y is its own inverse function, ��1
y = �y. A
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Quandles

A quandle is a set X with a binary operation . : X × X → X
satisfying:

(i) For all x ∈ X , x . x = x

(ii) For all y ∈ X , the map βy : X → X defined by βy (x) = x . y
is invertible.

(iii) For all x , y , z ∈ X , (x . y) . z = (x . z) . (y . z).

We write x .−1 y for β−1
y (x).

David Joyce and S.V. Matveev studied these structures
independently in the 1980s.
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function which is its own inverse (like flipping a light switch, or like

f(x) = x + 2 in Z4) is called an involution.

A function need not be an involution to be invertible; for instance,

the function f(x) = x + 2 has inverse function f�1(x) = x � 2 6=
f(x), and similarly the function f(x) =

p
x� 3 has inverse function

f�1(x) = x2 +3 6= f(x). Thus, in generalizing from unoriented knots

to oriented, we are replacing the involutions �y with merely invertible

functions �y with �y 6= ��1
y .

It would seem natural to call the new structure oriented kei, but

for historical reasons the standard name is quandle. Thus, we can

state our new definition:

Definition 14. A quandle is a set X with a binary operation . :

X ⇥X ! X satisfying

(i) For all x 2 X, x . x = x,

(ii) For all y 2 X, the map �y : X ! X defined by �y(x) = x.y

is invertible, and

(iii) For all x, y, z 2 X, (x . y) . z = (x . z) . (y . z).

We write x .�1 y for ��1
y (x).

With this definition, we can see that kei are a type of quandle,

namely quandles for which the maps �y are involutions. For this

reason, kei are often called involutory quandles.

As with kei, we can understand the quandle axioms in terms of

knot diagrams:
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Example 63. Any set X with the operation x.y = x for all x, y 2 X

is a quandle, called a trivial quandle. We will use the notation Tn to

denote a trivial quandle with n elements.

Example 64. Let F be a field, e.g. Q, R, C or Zp for p prime. Recall

that the set of invertible n⇥ n matrices with entries in F is denoted

GLn(F). Then we can check that GLn(F) is a quandle with quandle

operation

A .B = B�1AB

For instance, we can easily check that

A .A = A�1AA = A

so the first quandle axioms is satisfied. To verify the second quandle

axiom, we need to show that we can solve the equation A . B = C

for A. In this case, we have

A .B = B�1AB () B(A .B) = AB () B(A .B)B�1 = A

so we have A .�1 B = BAB�1. Verification of axiom (iii) is exer-

cise 8. The operation A . B = B�1AB is called conjugation, and

a quandle in which the quandle operation is conjugation is called a

conjugation quandle. Note that when multiplication is commutative,

the conjugation operation is trivial.

Example 65. More generally, let G be any group. Then G is a

quandle under the operation of conjugation, i.e.

x . y = y�1xy.
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Examples of Quandles

Let X = Z or Zn and define

x . y = 2y − x .

Axiom 1 x . x = 2x − x = x

Axiom 2
(x . y) . y = 2y − (x . y) = 2y − (2y − x) = 2y − 2y + x = x

Axiom 3
(x . y) . z = 2z − (x . y) = 2z − 2y + x

(x.z).(y .z) = 2(y .z)−(x.z) = 2(2z−y)−(2z−x) = 2z−2y+x

This is called the Dihedral Quandle.
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Examples of Quandles

Example 1 Let X = Z4 and define

x . y = 2y − x .

. 0 1 2 3

0 0 2 0 2
1 3 1 3 1
2 2 0 2 0
3 1 3 1 3

The orbit of an element x ∈ X , denoted by orb(x), is the set of
elements one can get to from x by quandle operations.

orb(0) = orb(2) = {0, 2} and orb(1) = orb(3) = {1, 3}
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More about Quandles

Connected Quandles A quandle X is connected if it has a single
orbit.

A quandle is Latin if for each a ∈ X , the map λa : X → X
defined by λa(b) = a . b is a bijection. That is, X is Latin if the
multiplication table of the quandle is a Latin square.
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Examples of Quandles

Example 2 Any set X with the operation x . y = x for all
x , y ∈ X is a quandle, called trivial quandle.

Example 3 Let F be a field. Then GLn(F) is a quandle with
quandle operation

A . B = B−1AB

Example 4 More generally, let G be any group. Then G is a
quandle under the operation of conjugation, i.e.

x . y = y−1xy
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Examples of Quandles

Let A be a module over Λ = Z[t±]. Then A is a quandle under the
operation

~x . ~y = t~x + (1− t)~y

known as an Alexander quandle.

Example 5 Any vector space V becomes an Alexander quandle
when we select an invertible linear transformation t : V → V and
define

~x . ~y = t~x + (I − t)~y

where I is the identity matrix.
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Examples of Quandles

Consider V = R2 and choose t =

[
1 2
1 3

]
Then t is invertible with t−1 =

[
3 −2
−1 1

]
and I − t =

[
0 −2
−1 −2

]
;

Then we have quandle operation

[
x1
x2

]
.

[
y1
y2

]
=

[
1 2
1 3

] [
x1
x2

]
+

[
0 −2
−1 −2

] [
y1
y2

]
[
x1
x2

]
.

[
y1
y2

]
=

[
x1 + 2x2 − y2

x1 + 3x2 − y1 − 2y2

]
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Examples of Quandles

Example 5 The integers modulo n, Zn, form an Alexander
quandle with the choice of any invertible element t ∈ Zn.

Consider Z3. We can choose t = 1 or t = 2. Then we have
Alexander quandle operation

~x . ~y = t~x + (1− t)~y

98 Quandles

Example 71. The integers mod n, Zn, form an Alexander quandle

with the choice of any invertible element t 2 Zn, i.e., any t whose

greatest common divisor with n is 1. Then we have Alexander quandle

operation

x . y = tx + (1� t)y.

For example, in Z3 we can choose t = 1 or t = 2; then we get Alexan-

der quandles with operations as listed:

x . y = x x . y = 2x + 2y

. 0 1 2

0 0 0 0

1 1 1 1

2 2 2 2

. 0 1 2

0 0 2 1

1 2 1 0

2 1 0 2

We can get more examples of finite Alexander quandles by taking

quotients of ⇤n = Zn[t±1] by monic Laurent polynomials P 2 ⇤n, i.e,

polynomials with top degree term tk+1 for some integer k. In fact, we

can without loss of generality assume P is a genuine polynomial by

multiplying P by tn to get a polynomial with nonzero constant term.

Then as a set, our finite quandle consists of Zn-linear combinations

of 1, t, t2, . . . , tk where deg(P ) = k + 1 with the rule that tk+1 gets

replaced by tk+1 � P in our computations.

Example 72. In the Alexander quandle A = ⇤3/(2+ t+ t2), we have

2 + t + t2 = 0 which implies t2 = �2 � t = 1 + 2t (since we have Z3

coe�cients). Then the elements of A are {0, 1, 2, t, 1 + t, 2 + t, 2t, 1 +

2t, 2 + 2t}. Then for instance we have

(1 + t) . 2t = t(1 + t) + (1� t)(2t)

= t + t2 + 2t� 2t2

= 3t� t2

= 2t2

= 2(1 + 2t)

= 1 + 4t

= 1 + t.

Example 73. In the Alexander quandle A = ⇤2/(1 + t2), we have

1 + t2 = 0 which implies t2 = �1 = 1 (since we have Z2 coe�cients).
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Examples of Quandles

Let Λn = Zn[t±].

Example 6 Alexander quandle

A = Λ3/(2 + t + t2)

Here 2 + t + t2 = 0 which implies t2 = −2− t = 1 + 2t. Then the
elements of A are

{0, 1, 2, t, 1 + t, 2 + t, 2t, 1 + 2t, 2 + 2t}

For example,

(1 + t) . 2t = t(1 + t) + (1− t)(2t) = 1 + t
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Racks

A rack is a generalization of a quandle.

A rack is a set X with a binary operation . : X × X → X
satisfying:

(i) For all y ∈ X , the map βy : X → X defined by βy (x) = x . y
is invertible.

(ii) For all x , y , z ∈ X , (x . y) . z = (x . z) . (y . z).

The set of Quandles ⊂ The set of Racks
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Quandle Rings

V.G. Bardakov, I.B.S. Passi, and M. Singh, Quandle rings, J.
Algebra Appl. (2019)

Let X be a rack and R an associative ring with unity. They
introduced the rack ring R[X ], a nonassociative ring, of X with
coefficients in R.

R[X ] :=
{∑

i

αixi |αi ∈ R, xi ∈ X
}

Mohamed Elhamdadi, Boris Tsvelikhovskiy, N.F., Ring theoretic
aspects of quandles. Journal of Algebra (2019)
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Shelves

A shelf is a generalization of a rack.

A shelf is a set X with a binary operation . : X × X → X
satisfying:

For all x , y , z ∈ X , (x . y) . z = (x . z) . (y . z).

The set of Quandles ⊂ The set of Racks ⊂ The set of Shelves

Matthew Pradeep Goonewardena, Mohamed Elhamdadi and N.F.,
Isomorphism classes of shelves (soon to be submitted)
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Example of a Shelf

Let X = Z4 and x . y = x + 2y for all x , y ∈ X . Then (Z4, ∗) is a
shelf of order 4.

. 0 1 2 3

0 0 1 2 3
1 2 3 1 3
2 0 0 2 0
3 2 1 3 1
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Number of Connected Racks and Quandles

n number of connected racks number of connected quandles

1 1 1
2 1 0
3 2 1
4 2 1
5 4 3
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Thank you!
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