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Introduction

The reciprocal f ∗(x) of a polynomial f (x) of degree n is defined by
f ∗(x) = xn f ( 1

x ), i.e. if

f (x) = a0 + a1 x + a2 x
2 + · · ·+ an x

n,

then
f ∗(x) = an + an−1 x + an−2 x

2 + · · ·+ a0 x
n.

A polynomial f (x) is called self-reciprocal if f ∗(x) = f (x), i.e. if
f (x) = a0 + a1x + a2x

2 + · · ·+ anx
n, an 6= 0, is self-reciprocal,

then ai = an−i for 0 ≤ i ≤ n.

Example 1 Let f (x) = 1 + 2x + 3x2 + 2x3 + x4.

Example 2 Let g(x) = 1 + 2x + 3x2 + 3x3 + 2x4 + x5.
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An application in coding theory

Let C be a code of length n over R, where R is either a ring or a
field. Consider the codeword c = (c0, c1, . . . , cn−2, cn−1) in C , and
denote its reverse by c r which is given by
c r = (cn−1, cn−2, . . . , c1, c0).

If τ denotes the cyclic shift, then τ(c) = (cn−1, c0, . . . , cn−2). A
code C is said to be a cyclic code if the cyclic shift of each
codeword is also a codeword.

Example The code C = {000, 110, 101, 011} is a cyclic code.
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An application in coding theory (contd.)

The codeword
c = (c0, c1, . . . , cn−1)

can be represented by the polynomial

f (x) = c0 + c1x + · · ·+ cn−1x
n−1.

The cyclic shifts of c correspond to the polynomials

x i f (x) (mod xn − 1) for i = 0, 1, . . . , n − 1.

Example The codeword v = 1101000 can be represented by the
polynomial v(x) = 1 + x + x3. Here n = 7. Then the codeword
1000110 is represented by the polynomial

x4v(x) = x4 + x5 + x7 ≡ 1 + x4 + x5 (mod 1 + x7).
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An application in coding theory (contd.)

Among all non-zero codewords in a cyclic code C, there is a unique
codeword whose corresponding polynomial g(x) has minimum
degree and divides xn − 1. The polynomial g(x) is called the
generator polynomial of the cyclic code C .

In 1964, James L. Massey studied reversible codes over finite fields
and showed that the cyclic code generated by the monic
polynomial g(x) is reversible if and only if g(x) is self-reciprocal.

J. L. Massey, Reversible codes, Information and Control 7 (1964),
369 – 380.
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Background

Let p be a prime and q a power of p.

Let Fq be the finite field with q elements.

The n-th reversed Dickson polynomial of the first kind Dn(a, x) is
defined by

Dn(a, x) =

b n
2
c∑

i=0

n

n − i

(
n − i

i

)
(−x)ian−2i ,

where a ∈ Fq is a parameter.

X. Hou, G. L. Mullen, J. A. Sellers, J. L. Yucas, Reversed Dickson
polynomials over finite fields, Finite Fields Appl. 15 (2009), 748 –
773.
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Background (contd.)

Dn(1, x) =
(1

2

)n−1
fn(1− 4x),

where

fn(x) =
∑
j≥0

(
n

2j

)
x j .

X. Hou, T. Ly, Necessary conditions for reversed Dickson
polynomials to be permutational, Finite Fields Appl. 16 (2010),
436 – 448.
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Background (contd.)

The n-th reversed Dickson polynomial of the second kind En(a, x)
can be defined by

En(a, x) =

b n
2
c∑

i=0

(
n − i

i

)
(−x)ian−2i ,

where a ∈ Fq is a parameter.

S. Hong, X. Qin, W. Zhao, Necessary conditions for reversed
Dickson polynomials of the second kind to be permutational, Finite
Fields Appl. 37 (2016), 54 – 71.
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Background (contd.)

En(1, x) =
1

2n
fn+1(1− 4x),

where

fn(x) =
∑
j≥0

(
n

2j + 1

)
x j .

S. Hong, X. Qin, W. Zhao, Necessary conditions for reversed
Dickson polynomials of the second kind to be permutational, Finite
Fields Appl. 37 (2016), 54 – 71.
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Background (contd.)

Reversed Dickson polynomials of the third kind Tn(1, x) can be
written explicitly as follows.

Tn(1, x) =
1

2n−1
fn(1− 4x),

where

fn(x) =
∑
j≥0

(
n

2j + 1

)
x j .

F., Reversed Dickson polynomials of the third kind.
arXiv:1602.04545
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Background (contd.)

For a ∈ Fq, the n-th Dickson polynomial of the (k + 1)-th kind
Dn,k(x , a) is defined by

Dn,k(x , a) =

b n
2
c∑

i=0

n − ki

n − i

(
n − i

i

)
(−a)ixn−2i ,

and D0,k(x , a) = 2− k .

Q. Wang, J. L. Yucas, Dickson polynomials over finite fields, Finite
Fields Appl. 18 (2012), 814 – 831.
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Background (contd.)

For a ∈ Fq, the n-th reversed Dickson polynomial of the (k + 1)-th
kind Dn,k(a, x) is defined by

Dn,k(a, x) =

b n
2
c∑

i=0

n − ki

n − i

(
n − i

i

)
(−x)ian−2i ,

and D0,k(a, x) = 2− k .

Q. Wang, J. L. Yucas, Dickson polynomials over finite fields, Finite
Fields Appl. 18 (2012), 814 – 831.
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Background (contd.)

When p is odd, the n-th reversed Dickson polynomial of the
(k + 1)-th kind Dn,k(1, x) can be written as

Dn,k(1, x) =
(1

2

)n
fn,k(1− 4x),

where

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
(x j − x j+1) + 2

∑
j≥0

(
n

2j

)
x j ∈ Z[x ]

for n ≥ 1 and

f0,k(x) = 2− k .

F., Reversed Dickson polynomials of the (k + 1)-th kind over finite
fields, J. Number Theory 172 (2017), 234 – 255.
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Self-reciprocal polynomials over Z

Recall that for n ≥ 1,

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
(x j − x j+1) + 2

∑
j≥0

(
n

2j

)
x j ∈ Z[x ].

Theorem Let n > 1 be even. fn,k(x) is a self-reciprocal if and only
if k ∈ {0, 2}.

Theorem Let n > 1 be odd. fn,k(x) is a self-reciprocal if and only
if k = 1 or n = 3 when k = 3.
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Self-reciprocal polynomials over Z (contd.)

Recall again that for n ≥ 1,

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
(x j − x j+1) + 2

∑
j≥0

(
n

2j

)
x j ∈ Z[x ].

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
x j − k

∑
j≥0

(
n − 1

2j + 1

)
x j+1 + 2

∑
j≥0

(
n

2j

)
x j

Let n be even.

(k(n − 1) + 2) +

n
2
−1∑

j=1

[
k

(
n − 1

2j + 1

)
− k

(
n − 1

2j − 1

)
+ 2

(
n

2j

)]
x j + (2− k) x

n
2 .
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Self-reciprocal polynomials over Z (contd.)

Replace the constant term by the coefficient of x
n
2 above and define gn,k to be

gn,k(x) := (2−k) +

n
2
−1∑

j=1

[
k

(
n − 1

2j + 1

)
−k

(
n − 1

2j − 1

)
+ 2

(
n

2j

)]
x j + (2−k) x

n
2 .

Also, replace the coefficient of x
n
2 by the constant term and define hn,k to be

hn,k(x) := (k(n−1)+2)+

n
2
−1∑

j=1

[
k

(
n − 1

2j + 1

)
−k

(
n − 1

2j − 1

)
+2

(
n

2j

)]
x j+(k(n−1)+2) x

n
2 .
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Self-reciprocal polynomials over Z (contd.)

Theorem Let n > 1 be even. gn,k and hn,k are self-reciprocal if and only if
k = 0.
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Self-reciprocal polynomials over Z (contd.)

Recall again that for n ≥ 1,

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
(x j − x j+1) + 2

∑
j≥0

(
n

2j

)
x j ∈ Z[x ].

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
x j − k

∑
j≥0

(
n − 1

2j + 1

)
x j+1 + 2

∑
j≥0

(
n

2j

)
x j

Let n be odd.

(k(n−1)+2)+

n−1
2

−1∑
j=1

[
k

(
n − 1

2j + 1

)
−k

(
n − 1

2j − 1

)
+2

(
n

2j

)]
x j+(−k(n−1)+2n) x

n−1
2 .
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Self-reciprocal polynomials over Z (contd.)

Replace the constant term by the coefficient of x
n−1

2 and define g∗
n,k to be

g∗
n,k(x) := (−k(n − 1) + 2n) +

n−1
2

−1∑
j=1

[
k

(
n − 1

2j + 1

)
− k

(
n − 1

2j − 1

)
+ 2

(
n

2j

)]
x j

+ (−k(n − 1) + 2n) x
n−1

2 .

Also, replace the coefficient of x
n−1

2 by the constant term and define h∗
n,k to be

h∗
n,k(x) := (k(n−1)+2)+

n−1
2

−1∑
j=1

[
k

(
n − 1

2j + 1

)
−k

(
n − 1

2j − 1

)
+2

(
n

2j

)]
x j+(k(n−1)+2) x

n−1
2 .
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Self-reciprocal polynomials over Z (contd.)

Theorem Let n > 1 be odd. g∗
n,k and h∗

n,k are self-reciprocal if and only if k = 1
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Self-reciprocal polynomials in odd characteristic

Let n > 1, p be an odd prime, and 0 ≤ k ≤ p − 1. Consider

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
(x j − x j+1) + 2

∑
j≥0

(
n

2j

)
x j ∈ Fp[x ].

Theorem Assume that n is even. Then fn,k(x) is a self-reciprocal if and only if
one of the following holds:

(i) k = 0.

(ii) k = 2 and n 6= (2`)p, where ` ∈ Z+.
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Self-reciprocal polynomials in odd characteristic (contd.)

Let n > 1, p be an odd prime, and 0 ≤ k ≤ p − 1. Consider

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
(x j − x j+1) + 2

∑
j≥0

(
n

2j

)
x j ∈ Fp[x ].

Theorem Assume that n > 0 is odd. Then fn,k(x) is a self-reciprocal if and
only if one of the following holds:

(i) n = 1 for any k.

(ii) k = 0 and n = p`, where ` ∈ Z+.

(iii) n = 3 and k = 3 when p > 3.

(iv) k = 1 and n + 1 6= (2`)p, where ` ∈ Z+.
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Self-reciprocal polynomials in odd characteristic (contd.)

Corollary If k = 0 and n > 2 with n ≡ 2 (mod 4), then fn,k(x) is not an
irreducible self-reciprocal polynomial.

Corollary If k = 2 and n 6= (2`)p with n ≡ 0 (mod 4), where ` ∈ Z+, then
fn,k(x) is not an irreducible self-reciprocal polynomial.

Corollary If k = 1 and n + 1 6= (2`)p with n ≡ 3 (mod 4), where ` ∈ Z+, then
fn,k(x) is not an irreducible self-reciprocal polynomial.
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In characteristic 2

Recall that for n ≥ 1,

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
(x j − x j+1) + 2

∑
j≥0

(
n

2j

)
x j ∈ Z[x ].

When p = 2, we have

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
(x j − x j+1) ∈ F2[x ].

Theorem Let n > 1 and k = 1. Then fn,k(x) is a self-reciprocal if and only if n
is even.

Corollary If n > 2 with n ≡ 2 (mod 4), then fn,k(x) is not an irreducible
self-reciprocal polynomial.

Remark Note that when n = 2, fn,k = x + 1 which is irreducible.
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Coterm polynomials

Coterm polynomials were introduced by Oztas, Siap, and Yildiz in Reversible
codes and applications to DNA, Lecture Notes in Comput. Sci., 8592, Springer,
Heidelberg, 2014.

Let R be a commutative ring with identity.

Definition Let f (x) = a0 + a1x + · · ·+ an−1x
n−1 ∈ R[x ]/(xn − 1) be a

polynomial, with ai ∈ R. If for all 1 ≤ i ≤ b n
2
c, we have ai = an−i , then f (x) is

said to be a coterm polynomial over R.

If f (x) = a0 + a1x + a2x
2 + · · ·+ anx

n, an 6= 0, is a self-reciprocal polynomial,
then the removal of the term anx

n from f (x) gives a coterm polynomial.
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Coterm Polynomials from reversed Dickson polynomials

fn,k(x) = k
∑
j≥0

(
n − 1

2j + 1

)
(x j − x j+1) + 2

∑
j≥0

(
n

2j

)
x j ∈ Z[x ].

Theorem Let n ≥ 4 be even and define

Cn,k(x) := fn,k(x)− 2x
n
2 and Gn,k(x) := gn,k(x)− 2x

n
2 ,

where gn,k(x) is the polynomial defined in a previous slide. If k = 0, then
Cn,k(x) and Gn,k(x) are coterm polynomials over Z. Moreover, define

Hn,k(x) := fn,k(x)− 2n x
n
2
−1 for n ≥ 6 even.

If k = 2, then Hn,k(x) is a coterm polynomial over Z.
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Coterm Polynomials from reversed Dickson polynomials
(contd.)

Theorem Let n > 3 be odd. Define

Cn,k(x) := fn,k(x)− (n + 1)x
n−1

2 and G∗
n,k(x) := g∗

n,k(x)− (n + 1)x
n−1

2 ,

where g∗
n,k(x) is the polynomial defined in a previous slide. If k = 1, then

Cn,k(x) and G∗
n,k(x) are coterm polynomials over Z.

Let p be an odd prime.

Theorem Let n ≥ 4 be even. Define

Cn,k(x) := fn,k(x)− 2 x
n
2 .

If k = 0 and wp(n) 6= 2, where wp(n) is the base p weight of n, then Cn,k(x) is
a coterm polynomial over Fp.
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Coterm Polynomials from reversed Dickson polynomials
(contd.)

Theorem Let n ≥ 6 be even. Define

Cn,k(x) := fn,k(x)− 2n x
n
2
−1.

If k = 2, n 6= (2`1)p, where `1 ∈ Z+, and n 6= p`2 + 1, where `2 ∈ Z+, then
Cn,k(x) is a coterm polynomial over Fp.

Theorem Let n > 3 be odd. Define

Cn,k(x) := fn,k(x)− (n + 1)x
n−1

2 .

If k = 1, n + 1 6= (2`1)p, where `1 ∈ Z+, and n 6= p`2 , where `2 ∈ Z+, then
Cn,k(x) is a coterm polynomial over Fp.

Remark In characteristic 2, fn,k(x)− x
n
2 is a coterm polynomial over F2 if

n ≥ 4 is even and n 6= 2`, where ` ∈ Z+.

Neranga Fernando Self-reciprocal polynomials arising from RDPs



For further details

F., Self-reciprocal polynomials and coterm polynomials. arXiv:1606.07750
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