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Introduction

Let p be a prime number. The finite prime field with characteristic p is

given by

Fp = {0, 1, 2, . . . , p� 1}.

We present self-reciprocal polynomials arising from Dickson polynomials

over Fp.

Dickson Polynomials of the First Kind
The nth Dickson polynomial of the first kind is given by the explicit ex-

pression

Dn(x, a) =

bn/2cX
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where a 2 Fp is a parameter. The recurrence relation of Dickson polyno-

mials of the first kind Dn(x, a) is given by

D0(x, a) = 2, D1(x, a) = x,

Dn(x, a) = xDn�1(x, a)� aDn�2(x, a) for n � 2.

Dickson Polynomials of the Second Kind
The nth Dickson polynomial of the second kind is given by the explicit

expression

En(x, a) =

bn/2cX
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where a 2 Fp is a parameter. The recurrence relation of Dickson polyno-

mials of the second kind En(x, a) is given by

E0(x, a) = 1, E1(x, a) = x,

En(x, a) = xEn�1(x, a)� aEn�2(x, a) forn � 2.

Dickson Polynomials of the (k + 1)th Kind
The nth Dickson polynomial of the (k + 1)th kind is given by the explicit

expression

Dn,k(x, a) =

bn/2cX
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where a 2 Fp is a parameter. The recurrence relation of Dickson polyno-

mials of the (k + 1)th kind Dn,k(x, a) is given by

D0,k(x, a) = 2� k, D1,k(x, a) = x,

Dn,k(x, a) = xDn�1,k(x, a)� aDn�2,k(x, a) forn � 2.

Self-reciprocal Polynomials

Self-reciprocal polynomials are polynomials whose coefficients form a

palindrome.

Example f(x) = x4 + 2x3 + 3x2 + 2x+ 1

Definition The reciprocal f⇤(x) of a polynomial f(x) of degree n is defined

by f⇤(x) = xnf( 1x ), i.e. if

f(x) = a0 + a1x+ a2x
2 + ...+ anx

n,

then

f⇤(x) = an + an�1x+ an�2x
2 + ...+ a0x

n.

A polynomial f(x) is called self-reciprocal if f⇤(x) = f(x), i.e. if f(x) =
a0 + a1x + a2x2 + ... + anxn, an 6= 0, is self-reciprocal, then ai = an�i for

0  i  n.

Conjectures

1. Dn(x, 1) is a self-reciprocal polynomial over F3 if and only if

n = 0 · 30 + ...+ 0 · 3k�1 + 2 · 3k, or

n = 0 · 30 + ...+ 0 · 3l�1 + 2 · 3l + 1 · 3l+1 + ...+ 1 · 3e,

where k � 0 and 0  l < l + 1 < e.

2. Let n > 4. If En(x, 1) is a self-reciprocal polynomial over Fp, then

p = 3 or p = 5.

3. En(x, 1) is a self-reciprocal polynomial over F3 if and only if

n = 1 · 30 + ...+ 1 · 3w, n = 2 · 30 + ...+ 2 · 3l, or

n = 2 · 30 + 2 · 31 + ...+ 2 · 3k + 1 · 3k+1 + ...+ 1 · 3e,

where e, k, l, and w are odd and e > k � 1.

4. En(x, 1) is a self-reciprocal polynomial over F5 if and only if

n = 4 · 50 + ...+ 4 · 5w, n = 2 · 50 + ...+ 2 · 5l, or

n = 2 · 50 + ...+ 2 · 5k + 4 · 5k+1 + ...+ 4 · 5e,

where k and l are odd, w � 0, l � 1, and 1  k < k + 1  e.

A Note on Confirming the Conjectures: We apply Lucas’ Theorem

and Kummer’s Theorem to show that
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for 0  i  n
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Results

1. If Dn(x, 1) is a self-reciprocal polynomial over Fp, then p = 3.

2. Let p > 5. En(x, 1) is a self-reciprocal polynomial if and only if n =

4.

3. There exist no self-reciprocal polynomials resulting from Dickson

polynomials of the third kind Dn,2(x, 1).

4. Dn,3(x, 1) is a self-reciprocal polynomial over Fp if and only if n = 2.

5. Let k > 3. There exist no self-reciprocal polynomials resulting from

Dn,k(x, 1).

Future Plans

1. Let f 2 Fq[x] be a nonzero polynomial. If f(0) 6= 0, the order of

f is the least positive integer e such that f |xe � 1. If f(0) = 0, let

f(x) = xr · g(x) for some integer r � 1 and g 2 Fq[x] with g(0) 6= 0.
In this case, the order of f is the order of g. We plan on studying any

patterns in the order of self-reciprocal polynomials that arise from

Dickson polynomials.

2. Cullen numbers are defined by Cn = n ·2n+1, where n is a natural

number. They were first studied by Rev. Father James Cullen who

was a Jesuit. He studied pure and applied mathematics at Trinity

College Dublin. We seek to determine whether there exist any Dick-

son polynomials that generate Cullen numbers. We also plan to study

the patterns in the kind of polynomials generated when the index of

a Dickson polynomial is a Cullen number.

3. Polynomial gn The nth polynomial gn is given by the explicit ex-

pression

gn(x) =
X
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where n is the index of the polynomial. The recurrence relation of

polynomial gn is given by

gn = 0, for 0  n  p� 1, gp�1 = �1,

gn = xgn�p + gn�p+1, for n � p.

We plan on studying the self-reciprocal behaviour of polynomial gn.
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