Fixed Points and Cycle Types of Reversed Dickson Permutation Polynomials

Haoming Wu and Neranga Fernando
Department of Mathematics and Computer Science, College of the Holy Cross

INTRODUCTION

Let p be a prime number. Then the finite prime field with characteristic p is given by

$$
\mathbb{F}_{p}=\{0,1,2, \ldots, p-1\} .
$$

We investigate fixed points and cycle types of permutation polynomials arising from reversed Dickson polynomials over \mathbb{F}_{p}.

Reversed Dickson Polynomials

The nth reversed Dickson polynomial (RDP) of the first kind is given by the explicit expression

$$
D_{n}(a, x)=\sum_{i=0}^{\lfloor n / 2\rfloor} \frac{n}{n-i}\binom{n-i}{i} a^{n-2 i}(-x)^{i},
$$

where $a \in \mathbb{F}_{p}$ is a parameter.
The recurrence relation of reversed Dickson polynomials is given by

$$
D_{0}(a, x)=2, \quad D_{1}(a, x)=a
$$

$$
D_{n}(a, x)=a D_{n-1}(a, x)-x D_{n-2}(a, x) \text { for } n \geq 2 .
$$

Here are the next few reversed Dickson polynomials:

- $D_{2}(1, x)=1-2 x$
- $D_{3}(1, x)=D_{2}(1, x)-x D_{1}(1, x)=(1-2 x)-x=1-3 x$
- $D_{4}(1, x)=D_{3}(1, x)-x D_{2}(1, x)=1-16 x+2 x^{2}$
- $D_{5}(1, x)=D_{4}(1, x)-x D_{3}(1, x)=1-125 x+5 x^{2}$

Permutation Polynomials and Fixed Points

A permutation polynomial (PP) over \mathbb{F}_{p} is a polynomial that permutes the elements of \mathbb{F}_{p}

Example 1 Consider the polynomial $g(x)=x^{3}+1$ and evaluate it at each element of \mathbb{F}_{5}. Then, in characteristic 5 , we have

$$
g(0)=1, g(1)=2, g(2)=4, g(3)=3, g(4)=0
$$

Since the polynomial $g(x)$ permutes the elements of $\mathbb{F}_{5}, g(x)$ is a permutation polynomial in \mathbb{F}_{5}.

A fixed point is a value that does not change under a given mapping. In Example 1, there is only one fixed point which is 3.

Reversed Dickson Permutation Polynomials

- For any $p, D_{2}(1, x)=D_{2 p}(1, x)=1+(p-2) x$ is a PP over \mathbb{F}_{p}

Example $D_{2}(1, x)=D_{26}(1, x)=11 x+1$ is a PP over \mathbb{F}_{13}.

- For any $p, D_{3}(1, x)=D_{3 p}(1, x)=1+(p-3) x$ is a PP over \mathbb{F}_{p}

Example $\mathrm{D}_{3}(1, x)=D_{39}(1, x)=10 x+1$ is a PP over \mathbb{F}_{13}.

- When $p \equiv 1$ or $5(\bmod 12), D_{p+1}(1, x)=\frac{1}{2}+\frac{1}{2}(1-4 x)^{\frac{p+1}{2}}$ is a PP of \mathbb{F}_{p}.

Example $D_{6}(1, x)=3 x^{3}+4 x^{2}+4 x+1$ is a PP of \mathbb{F}_{5}

- When $p \equiv 1$ or $7(\bmod 12), D_{p+2}(1, x)=\frac{1}{2}(1-4 x)^{\frac{p+1}{2}}+\frac{1}{2}-x$ is a PP over \mathbb{F}_{5}.

Example $D_{9}(1, x)=2 x^{4}+5 x^{3}+6 x^{2}+5 x+1$ is a PP of \mathbb{F}_{7}.

- When $p \equiv 1$ or $7(\bmod 12), D_{2 p+1}(1, x)=\frac{1}{2}(1-4 x)^{\frac{p+1}{2}}+\frac{1}{2}-x$ is a PP over \mathbb{F}_{7}

Example $D_{27}(1, x)=11 x^{7}+10 x^{6}+12 x^{5}+8 x^{4}+11 x^{3}+12 x^{2}+11 x+1$ is a PP of \mathbb{F}_{13}.

Results on Fixed Points

1. Let $p \geq 3$ be an odd prime and $n \in\{2,2 p\}$. Then, the reversed Dickson permutation polynomial $D_{n}(1, x)$ has exactly one fixed point.
2. Let $p>3$ be an odd prime and $n \in\{3,3 p\}$. Then, the reversed Dickson permutation polynomial $D_{n}(1, x)$ has exactly one fixed point.
3. Let $p \equiv 5(\bmod 12)$. The permutation polynomial $D_{p+1}(1, x)$ has no fixed point.
4. Let $p \equiv 1(\bmod 12)$. Then the permutation polynomial $D_{p+1}(1, x)$ has exactly one fixed point, and the permutation polynomials $D_{p+2}(1, x)$ and $D_{2 p+1}(1, x)$ have exactly $\frac{p+1}{2}$ fixed points.
5. Let $p \equiv 7(\bmod 12)$. Then the reversed Dickson permutation polynomials $D_{p+2}(1, x)$ and $D_{2 p+1}(1, x)$ have exactly $\frac{p+1}{2}$ fixed points.

CYCLE TYPES

In Example 1, we have

$$
0 \rightarrow 1,1 \rightarrow 2,2 \rightarrow 4,4 \rightarrow 0,
$$

This is a four-cycle which can be written as (0124). The fixed point is 3 . Thus, the cycle type of the permutation induced by $g(x)$ over \mathbb{F}_{5} is $(4,1)$, where 4 stands for the four-cycle and 1 stands for the fixed point.

Results on Cycle Types

1. Let $p \equiv 7(\bmod 12)$. Then the reversed Dickson permutation polynomials $D_{p+2}(1, x)$ and $D_{2 p+1}(1, x)$ have exactly $\frac{p+1}{2}$ fixed points.
2. Let $p>3$ be a prime and $j \in \mathbb{Z}^{+}$such that $j \mid p-1$. Then, the cycle type of the permutation polynomials $D_{2}(1, x)$ and $D_{2 p}(1, x)$ is $(\underbrace{\frac{p-1}{j}, \ldots, \frac{p-1}{j}}_{j \text { times }}, 1)$, where $\operatorname{ord}_{p}(-2)=\frac{p-1}{j}$. In particular, if -2 is
a primitive root modulo p, i.e. $j=1$, then the cycle type of the permutation polynomials $D_{2}(1, x)$ and $D_{2 p}(1, x)$ is $(p-1,1)$.
3. Let $p=3$. Then the cycle type of the permutation polynomials $D_{2}(1, x)$ and $D_{2 p}(1, x)$ is (3)
4. Let $p>3$ be a prime and $j \in \mathbb{Z}^{+}$such that $j \mid p-1$. Then the cycle type of the permutation polynomials $D_{3}(1, x)$ and $D_{3 p}(1, x)$ is $(\underbrace{\frac{p-1}{j}, \ldots, \frac{p-1}{j}}, 1)$ where $\operatorname{ord}_{p}(-3)=\frac{p-1}{j}$. In particular, if -3 is primitive root modulo p, then the cycle type of the permutation polynomials $D_{3}(1, x)$ and $D_{3 p}(1, x)$ is $(p-1,1)$.

5 . Let $p \geq 3$. Then the cycle type of the polynomial $D_{2}(1, x)+x$ is $(\underbrace{2, \ldots, 2}, 1)$. $\underbrace{}_{\frac{p-1}{2} \text { times }}$
6. Let $p \equiv 1(\bmod 12)$ or $p \equiv 7(\bmod 12)$.

Let $j \in \mathbb{Z}^{+}$such that $j \mid p-1$. Then the permutation polynomials $D_{p+2}(1, x)$ and $D_{2 p+1}(1, x)$ have the cycle type $(\underbrace{\frac{p-1}{j}, \ldots, \frac{p-1}{j}}_{\frac{j}{2} \text { times }}, \underbrace{1, \ldots, 1}_{\frac{p+1}{2} \text { times }})$ whenever $\operatorname{ord}_{p}(-3)=\frac{p-1}{j}$.

Future PLANS

Let X be a non-empty set, and let $\triangleright: X \times X \mapsto X$ be a binary operation. The pair (X, \triangleright) is called a quandle if it satisfies the following axioms: 1. For all $x \in X, x \triangleright x=x$
2. For all $x, y \in X, \beta_{y}(x)=x \triangleright y$ is invertible.
3. For all $x, y, z \in X,(x \triangleright y) \triangleright z=(x \triangleright z) \triangleright(y \triangleright z)$.

Example 2 Let $X=\mathbb{Z}_{3}$. For $x, y \in X$, define $x \triangleright y=2 y-x(\bmod 3)$.

	0	1	2
0	0	2	1
1	2	1	0
2	1	0	2

ACKNOWLEDGEMENTS

The authors would like to thank the Weiss Summer Research Program at College of the Holy Cross for the support.

