Fixed Points and Cycle Types of Reversed Dickson Permutation Polynomials

INTRODUCTION

Let p be a prime number. Then the finite prime field with char is given by

$$\mathbb{F}_p = \{0, 1, 2, \dots, p-1\}.$$

We investigate fixed points and cycle types of permutation arising from reversed Dickson polynomials over \mathbb{F}_p .

REVERSED DICKSON POLYNOMIALS

The *n*th reversed Dickson polynomial (RDP) of the first kind the explicit expression

$$D_n(a,x) = \sum_{i=0}^{\lfloor n/2 \rfloor} \frac{n}{n-i} \binom{n-i}{i} a^{n-2i} (-x)^i,$$

where $a \in \mathbb{F}_p$ is a parameter.

The recurrence relation of reversed Dickson polynomials is give

$$D_0(a, x) = 2, \ D_1(a, x) = a,$$

 $D_n(a,x) = aD_{n-1}(a,x) - xD_{n-2}(a,x)$ for $n \ge 2$.

Here are the next few reversed Dickson polynomials:

•
$$D_2(1,x) = 1 - 2x$$

•
$$D_3(1,x) = D_2(1,x) - xD_1(1,x) = (1-2x) - x = 1 - x$$

•
$$D_4(1,x) = D_3(1,x) - xD_2(1,x) = 1 - 16x + 2x^2$$

• $D_5(1,x) = D_4(1,x) - xD_3(1,x) = 1 - 125x + 5x^2$

PERMUTATION POLYNOMIALS AND FIXED

A permutation polynomial (PP) over \mathbb{F}_p is a polynomial that p elements of \mathbb{F}_p .

Example 1 Consider the polynomial $g(x) = x^3 + 1$ and evaluate element of \mathbb{F}_5 . Then, in characteristic 5, we have

$$g(0) = 1, g(1) = 2, g(2) = 4, g(3) = 3, g(4) = 0.$$

Since the polynomial g(x) permutes the elements of \mathbb{F}_5 , g(x) is tion polynomial in \mathbb{F}_5 .

A fixed point is a value that does not change under a given mapping. In Example 1, there is only one fixed point which is 3.

Haoming Wu and Neranga Fernando Department of Mathematics and Computer Science, College of the Holy Cross

	Reversed Dickson F	PERMUTA
characteristic p	• For any $p, D_2(1, x) = D_{2p}(x)$	(1,x) = 1 + (p
	Example $D_2(1, x) = D_{26}($	(1, x) = 11x +
on polynomials	• For any $p, D_3(1, x) = D_{3p}(x)$	(1,x) = 1 + (y
	Example $D_3(1, x) = D_{39}($	(1, x) = 10x +
LS ind is given by	• When $p \equiv 1$ or 5 (mod 12) of \mathbb{F}_p .), $D_{p+1}(1,x)$
	Example $D_6(1,x) = 3x^3$ -	$+4x^2+4x+$
	• When $p \equiv 1$ or 7 (mod 12) PP over \mathbb{F}_5 .), $D_{p+2}(1,x)$
	Example $D_9(1, x) = 2x^4$ -	$+5x^3 + 6x^2 +$
given by	• When $p \equiv 1$ or 7 (mod 12) PP over \mathbb{F}_7 .	$, D_{2p+1}(1,x)$
2.	Example $D_{27}(1, x) = 11x^{7}$ is a PP of \mathbb{F}_{13} .	$7 + 10x^6 + 12x^6$
	Results o	n Fixed
3x	1. Let $p \ge 3$ be an odd prin Dickson permutation polyn	ne and $n \in$ omial $D_n(1, x)$
	2. Let $p > 3$ be an odd prin Dickson permutation polyn	ne and $n \in$ omial $D_n(1, x)$
d Points	3. Let $p \equiv 5 \pmod{12}$. The p fixed point.	permutation p
t permutes the	4. Let $p \equiv 1 \pmod{12}$. Then has exactly one fixed point $D_{p+2}(1, x)$ and $D_{2p+1}(1, x)$.	n the permut bint, and th) have exactly
luate it at each	5. Let $p \equiv 7 \pmod{12}$. Then nomials $D_{p+2}(1, x)$ and D_2	the reversed $p_{p+1}(1, x)$ hav
0.		
) is a permuta-	CYC	JLE TYPE
	In Example 1, we have	

This is a four-cycle which can be written as (0124). The fixed point is 3.

Thus, the cycle type of the permutation induced by g(x) over \mathbb{F}_5 is (4, 1), where 4 stands for the four-cycle and 1 stands for the fixed point.

TION POLYNOMIALS

- (p-2)x is a PP over \mathbb{F}_p .
- 1 is a PP over \mathbb{F}_{13} .
- (p-3)x is a PP over \mathbb{F}_p .
- 1 is a PP over \mathbb{F}_{13} .

 $=\frac{1}{2}+\frac{1}{2}(1-4x)^{\frac{p+1}{2}}$ is a PP

1 is a PP of \mathbb{F}_5 .

 $=\frac{1}{2}(1-4x)^{\frac{p+1}{2}}+\frac{1}{2}-x$ is a

- +5x+1 is a PP of \mathbb{F}_7 .
- $x = \frac{1}{2}(1-4x)^{\frac{p+1}{2}} + \frac{1}{2} x$ is a
- $x^{5} + 8x^{4} + 11x^{3} + 12x^{2} + 11x + 1$

POINTS

- $\{2, 2p\}$. Then, the reversed x) has exactly one fixed point.
- $\{3, 3p\}$. Then, the reversed x) has exactly one fixed point.
- polynomial $D_{p+1}(1,x)$ has no

tation polynomial $D_{p+1}(1,x)$ e permutation polynomials y $\frac{p+1}{2}$ fixed points.

d Dickson permutation polyve exactly $\frac{p+1}{2}$ fixed points.

- $0 \rightarrow 1, 1 \rightarrow 2, 2 \rightarrow 4, 4 \rightarrow 0,$

- i times

- $D_2(1,x)$ and $D_{2p}(1,x)$ is (3).
- i times

a primitive root modulo p, then the cycle type of the permutation polynomials $D_3(1,x)$ and $D_{3p}(1,x)$ is (p-1,1).

- $(\underbrace{2,...,2}_{,...,2},1).$ $\frac{p-1}{2}$ times
- 6. Let $p \equiv 1 \pmod{12}$ or $p \equiv 7 \pmod{12}$. $(\frac{p-1}{i}, ..., \frac{p-1}{i}, ..., \frac{p-1}{j})$ whenever $\operatorname{ord}_p(-3) = \frac{p-1}{j}$. $\frac{p+1}{2}$ times $\frac{j}{2}$ times

1. For all $x \in X$, $x \triangleright x = x$. 2. For all $x, y \in X, \beta_y(x) = x \triangleright y$ is invertible. 3. For all $x, y, z \in X$, $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$.

ACKNOWLEDGEMENTS

The authors would like to thank the Weiss Summer Research Program at College of the Holy Cross for the support.

RESULTS ON CYCLE TYPES

1. Let $p \equiv 7 \pmod{12}$. Then the reversed Dickson permutation polynomials $D_{p+2}(1,x)$ and $D_{2p+1}(1,x)$ have exactly $\frac{p+1}{2}$ fixed points.

2. Let p > 3 be a prime and $j \in \mathbb{Z}^+$ such that $j \mid p - 1$. Then, the cycle type of the permutation polynomials $D_2(1,x)$ and $D_{2p}(1,x)$ is $\left(\frac{p-1}{i}, \dots, \frac{p-1}{i}, 1\right)$, where $\operatorname{ord}_p(-2) = \frac{p-1}{j}$. In particular, if -2 is

a primitive root modulo p, i.e. j = 1, then the cycle type of the permutation polynomials $D_2(1,x)$ and $D_{2p}(1,x)$ is (p-1,1).

3. Let p = 3. Then the cycle type of the permutation polynomials

4. Let p > 3 be a prime and $j \in \mathbb{Z}^+$ such that j | p - 1. Then the cycle type of the permutation polynomials $D_3(1,x)$ and $D_{3p}(1,x)$ is $\left(\frac{p-1}{i}, \dots, \frac{p-1}{i}, 1\right)$ where $\operatorname{ord}_p(-3) = \frac{p-1}{i}$. In particular, if -3 is

5. Let $p \geq 3$. Then the cycle type of the polynomial $D_2(1,x) + x$ is

Let $j \in \mathbb{Z}^+$ such that j|p - 1. Then the permutation polynomials $D_{p+2}(1,x)$ and $D_{2p+1}(1,x)$ have the cycle type

FUTURE PLANS

Let X be a non-empty set, and let $\triangleright : X \times X \mapsto X$ be a binary operation. The pair (X, \triangleright) is called a quandle if it satisfies the following axioms:

Example 2 Let $X = \mathbb{Z}_3$. For $x, y \in X$, define $x \triangleright y = 2y - x \pmod{3}$.