- (1) Decide whether the following statements are true or false. Provide counterexamples for those that are false, and supply proofs for those that are true.
 - (a) An open set that contains every rational number must necessarily be all of \mathbb{R} .
 - (b) The Nested Interval Property remains true if the term "closed interval" is replaced by "closed set."
 - (c) Every nonempty open set contains a rational number.
 - (d) Every bounded infinite closed set contains a rational number.
- (2) Assume A is an open set and B is a closed set. Determine if the following sets are definitely open, definitely closed, both, or neither.
 - (a) $\overline{A \cup B}$
 - (b) $A \setminus B = \{x \in A : x \notin B\}$
 - (c) $(A^c \cup B)^c$

(d)
$$(A \cap B) \cup (A^c \cap B)$$

- (e) $\overline{A}^c \cap \overline{A^c}$
- (3) Let A be nonempty and bounded above so that $s = \sup A$ exists.
 - (a) Show that $s \in A$
 - (b) Can an open set contain its supremum?
- (4) Give an example of a countable collection of open sets $\{O_1, O_2, O_3, \ldots\}$ whose intersection $\bigcap_{n=1}^{\infty} O_n$ is closed, not empty and not all of \mathbb{R} .
- (5) Prove that the only sets that are both open and closed are \mathbb{R} and the empty set \emptyset .
- (6) Use the ϵ - δ definition to supply a proper proof for the following limit statements.
 - (a) $\lim_{x \to 2} 3x + 1 = 7$. (b) $\lim_{x \to 3} 5x 6 = 9$. (c) $\lim_{x \to 2} 3x + 4 = 10.$ (d) $\lim_{x \to 3} 1/x = 1/3.$ (e) $\lim_{x \to 0} x^3 = 0.$
- (7) For each stated limit, find the largest possible δ -neighborhood that is a proper response to the given ϵ challenge.

 - (a) $\lim_{x \to 4} \sqrt{x} = 2$, where $\epsilon = 1$. (b) $\lim_{x \to 3} 5x 6 = 9$, where $\epsilon = 1$.
- (8) Decide if the following claims are true or false, and give short justifications for each conclusion.
 - (a) If a particular δ has been constructed as a suitable response to a particular ϵ challenge, then any smaller positive δ will also suffice.
 - (b) If $\lim f(x) = L$ and a happens to be in the domain of f, then L = f(a).

 - (c) If $\lim_{x \to a} f(x) = L$, then $\lim_{x \to a} 3[f(x) 2]^2 = 3(L 2)^2$. (d) If $\lim_{x \to a} f(x) = 0$, then $\lim_{x \to a} f(x)g(x) = 0$ for any function g (with domain equal to the domain of f).
- (9) Let $g: A \to R$ and assume that f is a bounded function on A in the sense that there exists M > 0 satisfying $|f(x)| \leq M$ for all $x \in A$. Show that $\lim_{x \to a} g(x) = 0$, then $\lim_{x \to a} g(x)f(x) = 0$ as well.
- (10) **Definition** lim $f(x) = \infty$ means that for all M > 0 we can find a $\delta > 0$ such that whenever $0 < |x c| < \delta$, it follows that f(x) > M.
 - (a) Show $\lim_{x\to 0} 1/x^2 = \infty$ in the sense described in the previous definition. .

 - (b) Now, construct a definition for the statement $\lim_{x \to \infty} f(x) = L$. Show $\lim_{x \to \infty} 1/x = 0$ (c) What would a rigorous definition for $\lim_{x \to \infty} f(x) = \infty$ look like? Give an example of such a limit.