- (1) Let (a_n) be a bounded sequence.
 - (a) Prove that the sequence defined by $y_n = \sup\{a_k : k \ge n\}$ converges.
 - (b) The *limit superior* of (a_n) , or $\limsup a_n$, is defined by

 $\limsup a_n = \lim y_n,$

where y_n is the sequence from part (a). Provide a reasonable definition for $\liminf a_n$ and briefly explain why it always exists for any bounded sequence.

- (c) Prove that $\liminf a_n \leq \limsup a_n$ for every bounded sequence, and give an example of a sequence for which the inequality is strict.
- (d) Show that $\liminf a_n = \limsup a_n$ if and only if $\lim a_n$ exists. In this case, all three share the same value.
- (2) Assume (a_n) is a bounded sequence with the property that every convergent subsequence of (a_n) converges to the same limit $a \in \mathbb{R}$. Show that (a_n) must converge to a.
- (3) Let (a_n) and (b_n) be Cauchy sequences. Decide whether each of the following sequences is a Cauchy sequence, justifying each conclusion.
 - (a) $c_n = |a_n b_n|$

(b)
$$c_n = (-1)^n a_n$$

- (c) $c_n = \lfloor a_n \rfloor$
- (4) Find examples of two series $\sum a_n$ and $\sum a_n$ both of which diverge but for which $\sum \min\{a_n, b_n\}$ converges. To make it more challenging, produce examples where (a_n) and (b_n) are strictly positive and decreasing.
- (5) (a) Show that if $a_n > 0$ and $\lim(na_n) = l$ with $l \neq 0$, then the series $\sum a_n$ diverges.
 - (b) Assume that $a_n > 0$ and $\lim(n^2 a_n)$ exists. Show that $\sum a_n$ converges.
- (6) Decide whether each of the following series converges or diverges:

(a)
$$\sum_{n=1}^{\infty} \frac{\sin(n)}{n^2}$$

(b) $1 - \frac{3}{4} + \frac{4}{6} - \frac{5}{8} + \frac{6}{10} - \frac{7}{12} + \cdots$
(c) $1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} + \frac{1}{8} - \frac{1}{9} + \cdots$

- (7) Give an example of each or explain why the request is impossible referencing the proper theorem(s).
 - (a) Two sequences (x_n) and (y_n) where $\sum x_n$ and $\sum (x_n + y_n)$ both converge but $\sum y_n$ diverges.

(b) A sequence (x_n) satisfying $0 \le x_n \le 1/n$ where $\sum (-1)^n x_n$ diverges.

- (8) Use the subsequences (s_{2n}) and (s_{2n+1}) , and the Monotone Convergence Theorem to prove the Alternating Series Test.
- (9) Give a proof for the Comparison Test using the Monotone Convergence Theorem.

(10) Prove the following:

- (a) The union of an arbitrary collection of open sets is open.
- (b) The intersection of a finite collection of open sets is open.
- (c) The union of a finite collection of closed sets is closed.
- (d) The intersection of an arbitrary collection of closed sets is closed.