(1) Let $\left(a_{n}\right)$ be a bounded sequence.
(a) Prove that the sequence defined by $y_{n}=\sup \left\{a_{k}: k \geq n\right\}$ converges.
(b) The limit superior of $\left(a_{n}\right)$, or $\lim \sup a_{n}$, is defined by

$$
\limsup a_{n}=\lim y_{n},
$$

where y_{n} is the sequence from part (a). Provide a reasonable definition for $\lim \inf a_{n}$ and briefly explain why it always exists for any bounded sequence.
(c) Prove that $\lim \inf a_{n} \leq \limsup a_{n}$ for every bounded sequence, and give an example of a sequence for which the inequality is strict.
(d) Show that $\lim \inf a_{n}=\limsup a_{n}$ if and only if $\lim a_{n}$ exists. In this case, all three share the same value.
(2) Assume $\left(a_{n}\right)$ is a bounded sequence with the property that every convergent subsequence of $\left(a_{n}\right)$ converges to the same limit $a \in \mathbb{R}$. Show that $\left(a_{n}\right)$ must converge to a.
(3) Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be Cauchy sequences. Decide whether each of the following sequences is a Cauchy sequence, justifying each conclusion.
(a) $c_{n}=\left|a_{n}-b_{n}\right|$
(b) $c_{n}=(-1)^{n} a_{n}$
(c) $c_{n}=\left\lfloor a_{n}\right\rfloor$
(4) Find examples of two series $\sum a_{n}$ and $\sum a_{n}$ both of which diverge but for which $\sum \min \left\{a_{n}, b_{n}\right\}$ converges. To make it more challenging, produce examples where $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are strictly positive and decreasing.
(5) (a) Show that if $a_{n}>0$ and $\lim \left(n a_{n}\right)=l$ with $l \neq 0$, then the series $\sum a_{n}$ diverges.
(b) Assume that $a_{n}>0$ and $\lim \left(n^{2} a_{n}\right)$ exists. Show that $\sum a_{n}$ converges.
(6) Decide whether each of the following series converges or diverges:
(a) $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{2}}$
(b) $1-\frac{3}{4}+\frac{4}{6}-\frac{5}{8}+\frac{6}{10}-\frac{7}{12}+\cdots$
(c) $1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}+\frac{1}{8}-\frac{1}{9}+\cdots$
(7) Give an example of each or explain why the request is impossible referencing the proper theorem(s).
(a) Two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ where $\sum x_{n}$ and $\sum\left(x_{n}+y_{n}\right)$ both converge but $\sum y_{n}$ diverges.
(b) A sequence $\left(x_{n}\right)$ satisfying $0 \leq x_{n} \leq 1 / n$ where $\sum(-1)^{n} x_{n}$ diverges.
(8) Use the subsequences $\left(s_{2 n}\right)$ and $\left(s_{2 n+1}\right)$, and the Monotone Convergence Theorem to prove the Alternating Series Test.
(9) Give a proof for the Comparison Test using the Monotone Convergence Theorem.
(10) Prove the following:
(a) The union of an arbitrary collection of open sets is open.
(b) The intersection of a finite collection of open sets is open.
(c) The union of a finite collection of closed sets is closed.
(d) The intersection of an arbitrary collection of closed sets is closed.

