1. The power delivered by a battery to an apparatus of resistance R (in ohms) is $P=\frac{2.25 R}{(R+0.5)^{2}}$ watts. Find the rate of change of power with respect to resistance for $R=2 \Omega$ and $R=5 \Omega$.
2. The position of a particle moving in a straight line is

$$
s(t)=t^{2}-t+10 \mathrm{~cm}
$$

for $0 \leq t \leq 5$. Find a time t at which the instantaneous velocity is equal to the average velocity for the entire trip.
3. A particle moving along a line has position $s(t)=t^{4}-18 t^{2} \mathrm{~m}$ at time t seconds. At which times does the particle pass through the origin? At which times is the particle instantaneously motionless (that is, it has zero velocity)?
4. Let $f(x)=\sqrt{x}$. Find a formula for $f^{(n)}(x)$ for $n \geq 2$.
5. Prove that for all whole numbers $n \geq 1$,

$$
\frac{d^{n}}{d x^{n}} \sin x=\sin \left(x+\frac{n \pi}{2}\right)
$$

6. The power P in a circuit is $P=R i^{2}$, where R is the resistance and i is the current. Find $d P / d t$ at $t=\frac{1}{3}$ if $R=1000 \Omega$ and i varies according to $i=\sin (4 \pi t)$ (time in seconds).
7. Match functions (A)-(C) with their derivatives (I)-(III) in the following figure.

