(1) Give an example of each of the following, or show that no such example is possible.
(a) A sequence with no convergent subsequences.
(b) A sequence $\left(a_{n}\right)$ such that $\left(a_{3 k}\right)$ converges to $1,\left(a_{3 k+1}\right)$ converges to 3 and $\left(a_{3 k+2}\right)$ converges to 6 .
(c) A sequence $\left(x_{n}\right)$ such that the subsequence $x_{3 k}$ converges to 3 and the subsequence $x_{7 k}$ converges to 7 .
(d) A sequence that has subsequences that converge to every natural number n.
(2) Use subsequences to prove that the sequence $x_{n}=\frac{n(-1)^{n}}{n+1}$ diverges.
(3) Prove that if the subsequences $\left(a_{2 k}\right)$ and $\left(a_{2 k+1}\right)$ both converge to the same limit a, then the sequence $\left(a_{n}\right)$ converges to a.
(4) Use the result of Problem $\# 3$ to prove that the sequence $x_{n}=\frac{n+(-1)^{n}}{n+1}$ converges, and find its limit.
(5) Let $z_{1}=\sqrt{2}$ and $z_{n+1}=6-2\left|z_{n}-3\right|$. Prove that $\left(z_{n}\right)$ has a subsequence that converges.
(6) Let $a_{1}=5$ and $a_{n+1}=-\frac{1}{2} a_{n}+4$. Prove $\left(a_{n}\right)$ converges and find its limit.
(7) Let $x_{1}=1$ and $x_{n+1}=\pi \sin \left(x_{n}\right)$ for $n \geq 1$. Prove $\left(x_{n}\right)$ has a convergent subsequence.
(8) Let $z_{1}=1$ and $z_{n+1}=\frac{2}{3} z_{n}\left(6-z_{n}\right)$. Prove that $\left(z_{n}\right)$ has a subsequence that converges.
(9) Prove that every sequence has a monotone subsequence.
(10) Prove that there exists a sequence that has subsequences that converge to every real number.
(11) Define $a_{1}=1$ and $a_{n+1}=\sqrt{5-2 a_{n}}$. Show that the sequence $\left(a_{n}\right)$ is contractive.
(12) Let $\left(x_{n}\right)$ be a sequence of real numbers defined by

$$
x_{1}=1, x_{2}=2, x_{n+2}=\frac{1}{3}\left(2 x_{n+1}+x_{n}\right), \text { for all } n \in \mathbb{N}
$$

Show that $\left(x_{n}\right)$ is convergent and find its limit.
(13) If $x_{1}>0$ and $x_{n+1}=\left(2+x_{n}\right)^{-1}$ for $n \geq 1$, show that the sequence $\left(x_{n}\right)$ is contractive.

