(1) Prove that $[0,1] \sim[0,2) \cup[4,6]$.
(2) Prove that if $A \sim B$ and $C \sim D$, then $A \times C \sim B \times D$.
(3) (a) Let S_{n} be the set of all subsets of \mathbb{N} with exactly n elements. Prove that S_{n} is countable. (You may use the result of Problem \#5)
(b) Let S be the set of all finite subsets of \mathbb{N}. Prove that S is countable.
(4) Prove that $(a, b) \sim(c, d)$ for any $a<b$ and $c<d$.
(5) Prove that if A_{k} is countable for $k=1, \ldots, n$ then $A_{1} \times A_{2} \times \cdots \times A_{n}$ is countable.
(6) Let S be the set of all polynomials with rational coefficients. Prove that S is countable.
(7) Prove that $[0,1] \sim[0,1)$.
(8) Prove that $\mathbb{I} \sim \mathbb{R}$.
(9) Let A be any nonempty set and let B be the set of all functions $f:\{0,1\} \rightarrow A$. Show that $B \sim A \times A$.

