- (1) Prove that $[0,1] \sim [0,2) \cup [4,6]$.
- (2) Prove that if $A \sim B$ and $C \sim D$, then $A \times C \sim B \times D$.
- (3) (a) Let S_n be the set of all subsets of \mathbb{N} with exactly *n* elements. Prove that S_n is countable. (You may use the result of Problem #5)
 - (b) Let S be the set of all finite subsets of \mathbb{N} . Prove that S is countable.
- (4) Prove that $(a, b) \sim (c, d)$ for any a < b and c < d.
- (5) Prove that if A_k is countable for k = 1, ..., n then $A_1 \times A_2 \times \cdots \times A_n$ is countable.
- (6) Let S be the set of all polynomials with rational coefficients. Prove that S is countable.
- (7) Prove that $[0,1] \sim [0,1)$.
- (8) Prove that $\mathbb{I} \sim \mathbb{R}$.
- (9) Let A be any nonempty set and let B be the set of all functions $f: \{0,1\} \to A$. Show that $B \sim A \times A$.