(1) Compute without proofs, the suprema and infima of the following sets:
(a) $\left\{n \in \mathbb{N}: n^{2}<10\right\}$.
(b) $\{n /(m+n): m, n \in \mathbb{N}\}$.
(c) $\{n /(2 n+1): n \in \mathbb{N}\}$.
(d) $\{n / m: m, n \in \mathbb{N}$ with $m+n \leq 10\}$.
(e) $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$
(2) (a) Give an example of a set of rational numbers whose supremum is irrational.
(b) Give an example of a set of irrational numbers whose supremum is rational.
(3) Suppose $A$ and $B$ are nonempty subsets of $\mathbb{R}$ such that $\inf (B)<\sup (A)$. Show that there exist $a \in A$ and $b \in B$ such that $b<a$.
(4) Let $A$ and $B$ be subsets of $\mathbb{R}$ that are bounded below, and let $A+B=\{a+b: a \in A$ and $b \in B\}$. Prove that $\inf (A+B)=\inf (A)+\inf (B)$.
(5) Let $A=\left\{\frac{3 n+12}{n+2}: n \in \mathbb{N}\right\}$.
(a) Find $\min (A)$ and $\max (A)$, and prove your assertions.
(b) Find $\inf (A)$ and $\sup (A)$, and prove your assertions.

