(1) Compute R_{6}, L_{6} and M_{6} for $f(x)=-2 x^{2}-3 x+1$ on the interval [2, 8].
(2) What is $\int_{3}^{5} d x$? Here the function is $f(x)=1$.
(3) Let $I=\int_{2}^{7} f(x) d x$, where $f(x)$ is continuous. State whether true or false:
(a) I is the area between the graph and the x-axis over $[2,7]$.
(b) If $f(x) \geq 0$, then I is the area between the graph and the x-axis over $[2,7]$.
(c) If $f(x) \leq 0$, then $-I$ is the area between the graph and the x-axis over $[2,7]$.
(4) Evaluate $\int_{0}^{2 \pi} \sin ^{2} x d x+\int_{0}^{2 \pi} \cos ^{2} x d x$.
(5) Explain graphically $\int_{0}^{\pi} \cos x d x=0$.
(6) In (a), (b), (c) and (d), refer to the following figure. The two parts of the graph are semicircles.
(a) $\int_{0}^{2} f(x) d x$
(c) $\int_{1}^{4} f(x) d x$
(b) $\int_{0}^{6} f(x) d x$
(d) $\int_{1}^{6}|f(x)| d x$

(7) Draw a graph of the signed area represented by the integral and compute it using geometry.
(a) $\int_{-2}^{3}|x| d x$
(c) $\int_{6}^{8}(7-x) d x$
(b) $\int_{0}^{5} \sqrt{25-x^{2}} d x$
(d) $\int_{\pi / 2}^{3 \pi / 2} \sin x d x$
(8) State whether true or false. If false, sketch the graph of a counterexample.
(a) If $f(x)>0$, then $\int_{a}^{b} f(x) d x>0$
(b) If $\int_{a}^{b} f(x) d x>0$, then $f(x)>0$.
(9) Determine the sign of the integral without calculating it. Draw a graph if necessary.
(a) $\int_{-2}^{1} x^{4} d x$
(c) $\int_{0}^{2 \pi} x \sin x d x$
(b) $\int_{-2}^{1} x^{3} d x$
(d) $\int_{0}^{2 \pi} \frac{\sin x}{x} d x$
(10) Explain the difference in graphical interpretation between

$$
\int_{a}^{b} f(x) d x \text { and } \int_{a}^{b}|f(x)| d x
$$

(11) Let $f(x)=x$. Find an interval $[a, b]$ such that

$$
\left|\int_{a}^{b} f(x) d x\right|=\frac{1}{2} \text { and } \int_{a}^{b}|f(x)| d x=\frac{3}{2}
$$

(12) Use the Comparison Theorem to show that

$$
\int_{0}^{1} x^{5} d x \leq \int_{0}^{1} x^{4} d x \text { and } \int_{1}^{2} x^{4} d x \leq \int_{1}^{2} x^{5} d x
$$

(13) Prove that $\frac{1}{3} \leq \int_{4}^{6} \frac{1}{x} d x \leq \frac{1}{2}$
(14) Prove that $0 \leq \int_{\pi / 4}^{\pi / 2} \frac{\sin x}{x} d x \leq \frac{\sqrt{2}}{2}$
(15) Find upper and lower bounds for $\int_{0}^{1} \frac{d x}{\sqrt{5 x^{3}+4}}$
(16) Prove by computing the limit of right-endpoint approximations, i.e. $\lim _{n \rightarrow \infty} R_{n}$:

$$
\int_{0}^{b} x^{3} d x=\frac{b^{4}}{4}
$$

(17) Use the formula derived in the previous problem to calculate the integral $\int_{-1}^{1}\left|x^{3}\right| d x$.

