Worksheet 2

- (1) Compute R_6 , L_6 and M_6 for $f(x) = -2x^2 3x + 1$ on the interval [2,8].
- (2) What is $\int_{3}^{5} dx$? Here the function is f(x) = 1.
- (3) Let $I = \int_{2}^{7} f(x) dx$, where f(x) is continuous. State whether true or false:
 - (a) I is the area between the graph and the x-axis over [2, 7].
 - (b) If $f(x) \ge 0$, then I is the area between the graph and the x-axis over [2,7].
 - (c) If $f(x) \leq 0$, then -I is the area between the graph and the x-axis over [2,7].

(4) Evaluate
$$\int_0^{2\pi} \sin^2 x \, dx + \int_0^{2\pi} \cos^2 x \, dx.$$

- (5) Explain graphically $\int_0^{\pi} \cos x \, dx = 0.$
- (6) In (a), (b), (c) and (d), refer to the following figure. The two parts of the graph are semicircles.

(7) Draw a graph of the signed area represented by the integral and compute it using geometry.

(a)
$$\int_{-2}^{3} |x| dx$$

(b) $\int_{0}^{5} \sqrt{25 - x^2} dx$
(c) $\int_{6}^{8} (7 - x) dx$
(d) $\int_{\pi/2}^{3\pi/2} \sin x dx$

(8) State whether true or false. If false, sketch the graph of a counterexample.

(a) If
$$f(x) > 0$$
, then $\int_{a}^{b} f(x) dx > 0$ (b) If $\int_{a}^{b} f(x) dx > 0$, then $f(x) > 0$.

(9) Determine the sign of the integral without calculating it. Draw a graph if necessary.

(a)
$$\int_{-2}^{1} x^{4} dx$$

(b) $\int_{-2}^{1} x^{3} dx$
(c) $\int_{0}^{2\pi} x \sin x dx$
(d) $\int_{0}^{2\pi} \frac{\sin x}{x} dx$

(10) Explain the difference in graphical interpretation between

$$\int_{a}^{b} f(x) dx$$
 and $\int_{a}^{b} |f(x)| dx$

(11) Let f(x) = x. Find an interval [a, b] such that

$$\left| \int_{a}^{b} f(x) \, dx \right| = \frac{1}{2} \text{ and } \int_{a}^{b} |f(x)| \, dx = \frac{3}{2}$$

(12) Use the Comparison Theorem to show that

$$\int_0^1 x^5 \, dx \le \int_0^1 x^4 \, dx \quad \text{and} \quad \int_1^2 x^4 \, dx \le \int_1^2 x^5 \, dx$$

- (13) Prove that $\frac{1}{3} \le \int_4^6 \frac{1}{x} \, dx \le \frac{1}{2}$
- (14) Prove that $0 \le \int_{\pi/4}^{\pi/2} \frac{\sin x}{x} \, dx \le \frac{\sqrt{2}}{2}$

(15) Find upper and lower bounds for
$$\int_0^1 \frac{dx}{\sqrt{5x^3+4}}$$

(16) Prove by computing the limit of right-endpoint approximations, i.e. $\lim_{n\to\infty} R_n$:

$$\int_0^b x^3 \, dx \, = \, \frac{b^4}{4}$$

(17) Use the formula derived in the previous problem to calculate the integral $\int_{-1}^{1} |x^3| dx$.