We know that

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} \quad \text { for }|x|<1
$$

(1) Prove that

$$
\frac{1}{1-2 x}=\sum_{n=0}^{\infty} 2^{n} x^{n} \quad \text { for }|x|<\frac{1}{2} .
$$

(2) Find a power series expansion centered at 0 for

$$
f(x)=\frac{1}{2+x^{2}}
$$

and find the interval of convergence.

Theorem Assume that

$$
F(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

has radius of convergence $R>0$. Then $F(x)$ is differentiable on $(c-R, c+R)$ (or for all x if $R=\infty$). Furthermore, we can integrate and differentiate term by term for $x \in(c-R, c+R)$,

$$
\begin{gathered}
F^{\prime}(x)=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1} \\
\int F(x) d x=A+\sum_{n=0}^{\infty} \frac{c_{n}}{n+1}(x-a)^{n+1} \quad(A \text { any constant })
\end{gathered}
$$

These series have the same radius of convergence R.
(3) Prove that for $-1<x<1$,

$$
\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+\cdots
$$

(4) Prove that for $-1<x<1$,

$$
\tan ^{-1} x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}
$$

