1. Sliding Ladder Problem A 5-meter ladder leans against a wall. The bottom of the ladder is 1.5 meters from the wall at time $t=0$ and slides away from the wall at a rate of $0.8 \mathrm{~m} / \mathrm{s}$. Find the velocity of the top of the ladder at time $t=1$.

2. Filling a Rectangular Tank Water pours into a fish tank at a rate of $0.3 \mathrm{~m}^{3} / \mathrm{min}$. How fast is the water level rising if the base of the tank is a rectangle of dimensions 2×3 meters?

3. Tracking a Rocket A spy uses a telescope to track a rocket launched vertically from a launching pad 6 km away, as in the following Figure. At a certain moment, the angle θ between the telescope and the ground is equal to $\frac{\pi}{3}$ and is changing at a rate of $0.9 \mathrm{rad} / \mathrm{min}$. What is the rocket's velocity at that moment?

4. Filling a Conical Tank Water pours into a conical tank of height 10 m and radius 4 m at a rate of $6 \mathrm{~m}^{3} / \mathrm{min}$.

(a) At what rate is the water level rising when the level is 5 m high?
(b) As time passes, what happens to the rate at which the water level rises?
5. Farmer John's tractor, traveling at $3 \mathrm{~m} / \mathrm{s}$, pulls a rope attached to a bale of hay through a pulley. With dimensions as indicated in the figure, how fast is the bale rising when the tractor is 5 m from the bale?

