
MATH 136 Calculus 2 Worksheet 15 Fall 2023

Definition

A series
∑

an is called absolutely convergent if the series of absolute values
∑

|an| is convergent.

Theorem

If a series
∑

an is absolutely convergent, then it is convergent.

Note It is possible for a series to be convergent but not absolutely convergent.

Definition

A series
∑

an is called conditionally convergent if
∑

an is convergent but the series of absolute values∑
|an| is divergent.

(1) Determine whether the series converges absolutely, conditionally, or not at all.
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(2) Determine convergence or divergence by any method.
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