How to determine whether a function is increasing/decreasing on an interval?

(a) If $f^{\prime}(x)>0$ for $x \in(a, b)$, then f is increasing on (a, b).
(b) If $f^{\prime}(x)<0$ for $x \in(a, b)$, then f is decreasing on (a, b).
(1) Find where the function $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$ is increasing and where it is decreasing.

First Derivative Test Assume that $f(x)$ is differentiable and c is a critical point of $f(x)$. Then we have the following.
(a) If f^{\prime} changes from + to - at c, then f has a local maximum at c, and $f(c)$ is a local maximum value of f.
(b) If f^{\prime} changes from - to + at c, then f has a local minimum at c, and $f(c)$ is a local minimum value of f.
(c) If f^{\prime} is + to the left and right of c, or - to the left and right of c, then f has no local maximum or minimum at c.

Example Find the local maximum and minimum values of the function

$$
g(x)=x+2 \sin x, \quad 0 \leq x \leq 2 \pi
$$

Definition If the graph of f lies above all of its tangents on an interval I, then it is called concave upward on I. If the graph of f lies below all of its tangents on I, it is called concave downward on I.

Test for Concavity Assume that $f^{\prime \prime}(x)$ exists for all $x \in(a, b)$.
(a) If $f^{\prime \prime}(x)>0$ for all $x \in(a, b)$, then f is concave up on (a, b).
(b) If $f^{\prime \prime}(x)<0$ for all $x \in(a, b)$, then f is concave down on (a, b).

Definition A point P on a curve $y=f(x)$ is called an inflection point if f is continuous there and the curve changes from concave upward to concave downward or from concave downward to concave upward at P.

Test for Inflection Points Assume that $f^{\prime \prime}(x)$ exists. If $f^{\prime \prime}(c)=0$ and $f^{\prime \prime}(x)$ changes sign at $x=c$, then $f(x)$ has a point of inflection at $x=c$

Example Find the points of inflection and intervals of concavity of $f(x)=3 x^{5}-5 x^{4}+1$.

Second Derivative Test Let c be a critical point of $f(x)$. If $f^{\prime \prime}(c)$ exists, then

- $f^{\prime \prime}(c)>0 \Longrightarrow f(c)$ is a local minimum.
- $f^{\prime \prime}(c)<0 \Longrightarrow f(c)$ is a local maximum.
- $f^{\prime \prime}(c)=0 \Longrightarrow$ inconclusive: $f(c)$ may be a local min, a local max, or neither.

Example Analyze the critical points of

$$
f(x)=2 x^{3}+3 x^{2}-12 x
$$

Example Analyze the critical points of

$$
f(x)=x^{5}-5 x^{4}
$$

1. Consider the function $f(x)=x^{4}-2 x^{2}+3$
(i) find the intervals on which f is increasing or decreasing.
(ii) find the local maximum and minimum values of f.
(iii) find the intervals of concavity and the inflection points.
2. Consider the function $f(x)=x^{2}-x-\ln x$
(i) find the intervals on which f is increasing or decreasing.
(ii) find the local maximum and minimum values of f.
(iii) find the intervals of concavity and the inflection points.
3. Consider the function $y=\frac{x^{2}+1}{(x+3)^{2}}$
(i) find all intervals of increase/decrease.
(ii) find all local extrema.
(iii) find all intervals of concave up/down.
(iv) find all points of inflection.
(v) sketch the graph of the function.
4. Find the local maximum and minimum values of f using both the First and Second Derivative Tests.
(a) $f(x)=1+3 x^{2}-2 x^{3}$
(b) $f(x)=\frac{x^{2}}{x-1}$
