Sections 5.1 - 5.6

- (1) (a) What is a sequence?
 - (b) What does it mean to say that $\lim_{n\to\infty} a_n = 8$?
 - (c) What does it mean to say that $\lim_{n\to\infty} a_n = \infty$?
- (2) (a) What is a convergent sequence? Give two examples.

(b) What is a divergent sequence? Give two examples.

- (3) List the first six terms of the sequence defined by $a_n = \frac{n}{2n+1}$. Does the sequence appear to have a limit? If so, find it.
- (4) Find a formula for the general term a_n of the sequence, assuming that the pattern of the first few terms continues.
 - (a) $\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \ldots\}$ (b) $\{1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}, \ldots\}$ (c) $\{2, 7, 12, 17, \ldots\}$ (d) $\{-\frac{1}{4}, \frac{2}{9}, -\frac{3}{16}, \frac{4}{25}, \ldots\}$ (e) $\{1, -\frac{2}{3}, \frac{4}{9}, -\frac{8}{27}, \ldots\}$ (f) $\{5, 1, 5, 1, 5, 1, \ldots\}$
- (5) Determine whether the sequence converges or diverges. If it converges, find the limit.

(a)
$$a_n = \frac{3+5n^2}{n+n^2}$$

(b) $a_n = 1 - (0.2)^n$
(c) $a_n = e^{1/n}$
(d) $a_n = \tan\left(\frac{2n\pi}{1+8n}\right)$
(e) $a_n = \cos(2/n)$
(f) $a_n = \cos(2/n)$
(g) $a_n = \frac{(-1)^{n-1}n}{n^1+1}$
(h) $\left\{\frac{e^n + e^{-n}}{e^{2n} - 1}\right\}$
(i) $a_n = \frac{\cos^2 n}{2^n}$
(j) $a_n = \frac{(\ln n)^2}{n}$

(6) Determine whether the sequence is increasing, decreasing, or not monotonic. Is the sequence bounded?

(a)
$$a_n = \frac{1}{2n+3}$$
 (c) $a_n = \frac{2n-3}{3n+4}$ (d) $a_n = n + \frac{1}{n}$
(b) $a_n = n(-1)^n$

(7) Show that the sequence defined by

$$a_1 = 1$$
 $a_{n+1} = 3 - \frac{1}{a_n}$

is increasing and $a_n < 3$ for all n. Deduce that $\{a_n\}$ is convergent and find its limit.

(8) (a) What is the difference between a sequence and a series?

(b) What is a convergent series? What is a divergent series?

(9) Explain what it means to say that
$$\sum_{n=1}^{\infty} a_n = 5$$
?

(10) Let $a_n = \frac{2n}{3n+1}$.

- (a) Determine whether $\{a_n\}$ is convergent.
- (b) Determine whether $\sum_{n=1}^{\infty} a_n$ is convergent.

- (11) Determine whether the geometric series is convergent or divergent. If it is convergent, find its sum.
 - (a) $3 4 + \frac{16}{3} \frac{64}{9} + \cdots$ (b) $10 - 2 + 0.4 - 0.08 + \cdots$ (c) $1 + 0.4 + 0.16 + 0.064 + \cdots$ (d) $\sum_{n=0}^{\infty} \frac{\pi^n}{3^{n+1}}$
- (12) Determine whether the series is convergent or divergent. If it is convergent, find its sum.

(a)
$$\sum_{n=1}^{\infty} \frac{n-1}{3n-1}$$
 (c) $\sum_{k=2}^{\infty} \frac{k^2}{k^2-1}$ (d) $\sum_{n=1}^{\infty} \arctan(k)$ (b) $\sum_{n=1}^{\infty} \frac{1+3^n}{2^n}$

(13) Determine whether the series is convergent or divergent by expressing s_n as a telescoping sum. If it is convergent, find its sum.

(a)
$$\sum_{n=2}^{\infty} \frac{2}{n^2 - 1}$$
 (b) $\sum_{n=1}^{\infty} \ln \frac{n}{n+1}$

(14) Find the values of x for which the series converges. Find the sum of the series for those values of x.

(a)
$$\sum_{n=0}^{\infty} \frac{(x+3)^n}{2^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{x^n}{3^n}$

(15) If the *n*-th partial sum of a series $\sum_{n=1}^{\infty} a_n$ is

$$s_n = \frac{n-1}{n+1}$$

find a_n and $\sum_{n=1}^{\infty} a_n$.

(16) Use the Integral Test to determine whether the series is convergent or divergent.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^5}$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+4}}$

(17) Use the Comparison Test to determine whether the series is convergent or divergent.

(a)
$$\sum_{n=1}^{\infty} \frac{n}{2n^3 + 1}$$
 (b) $\sum_{n=2}^{\infty} \frac{n^3}{n^4 - 1}$

(18) Find the values of p for which the following series is convergent.

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$$

(19) Determine whether the series is convergent or divergent.

(a)
$$\sum_{n=1}^{\infty} \frac{2}{n^{0.85}}$$
 (e) $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$
(b) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ (f) $\sum_{n=1}^{\infty} ne^{-n}$
(c) $\sum_{n=1}^{\infty} \frac{1}{n^2 + 9}$ (g) $\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^2 + 1}$
(d) $\sum_{n=1}^{\infty} \frac{n^2 - 5n}{n^3 + n + 1}$ (h) $\sum_{n=1}^{\infty} \frac{n - 1}{n4^n}$

(i) $\sum_{n=1}^{\infty} \frac{4+3^n}{2^n}$ (j) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3+1}}$

 $\left(20\right)$ Test the series for convergence or divergence.

(a)
$$\frac{4}{7} - \frac{4}{8} + \frac{4}{9} - \frac{4}{10} + \frac{4}{11} - \cdots$$

(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n+1}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln(n+4)}$
(d) $\sum_{n=1}^{\infty} (-1)^n \cos\left(\frac{\pi}{n}\right)$

(21) Determine whether the series is absolutely convergent.

(a)
$$\sum_{n=1}^{\infty} \frac{(-3)^n}{n^3}$$
 (c) $\sum_{n=1}^{\infty} \frac{n!}{100^n}$
(b) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sqrt{n}}{n+1}$ (d) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$