Sections 5.1-5.6

(1) (a) What is a sequence?
(b) What does it mean to say that $\lim _{n \rightarrow \infty} a_{n}=8$?
(c) What does it mean to say that $\lim _{n \rightarrow \infty} a_{n}=\infty$?
(a) What is a convergent sequence? Give two examples.
(b) What is a divergent sequence? Give two examples.
(3) List the first six terms of the sequence defined by $a_{n}=\frac{n}{2 n+1}$. Does the sequence appear to have a limit? If so, find it.
(4) Find a formula for the general term a_{n} of the sequence, assuming that the pattern of the first few terms continues.
(a) $\left\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \ldots\right\}$
(c) $\{2,7,12,17, \ldots\}$
(e) $\left\{1,-\frac{2}{3}, \frac{4}{9},-\frac{8}{27}, \ldots\right\}$
(b) $\left\{1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}, \ldots\right\}$
(d) $\left\{-\frac{1}{4}, \frac{2}{9},-\frac{3}{16}, \frac{4}{25}, \ldots\right\}$
(f) $\{5,1,5,1,5,1, \ldots\}$
(5) Determine whether the sequence converges or diverges. If it converges, find the limit.
(a) $a_{n}=\frac{3+5 n^{2}}{n+n^{2}}$
(e) $a_{n}=\cos (2 / n)$
(h) $\left\{\frac{e^{n}+e^{-n}}{e^{2 n}-1}\right\}$
(b) $a_{n}=1-(0.2)^{n}$
(f) $a_{n}=\frac{(-1)^{n-1} n}{n^{1}+1}$
(i) $a_{n}=\frac{\cos ^{2} n}{2^{n}}$
(c) $a_{n}=e^{1 / n}$
(g) $a_{n}=\frac{(-1)^{n} n^{3}}{n^{3}+2 n^{2}+1}$
(j) $a_{n}=\frac{(\ln n)^{2}}{n}$
(6) Determine whether the sequence is increasing, decreasing, or not monotonic. Is the sequence bounded?
(a) $a_{n}=\frac{1}{2 n+3}$
(c) $a_{n}=\frac{2 n-3}{3 n+4}$
(d) $a_{n}=n+\frac{1}{n}$
(b) $a_{n}=n(-1)^{n}$
(7) Show that the sequence defined by

$$
a_{1}=1 \quad a_{n+1}=3-\frac{1}{a_{n}}
$$

is increasing and $a_{n}<3$ for all n. Deduce that $\left\{a_{n}\right\}$ is convergent and find its limit.
(8) (a) What is the difference between a sequence and a series?
(b) What is a convergent series? What is a divergent series?
(9) Explain what it means to say that $\sum_{n=1}^{\infty} a_{n}=5$?
(10) Let $a_{n}=\frac{2 n}{3 n+1}$.
(a) Determine whether $\left\{a_{n}\right\}$ is convergent.
(b) Determine whether $\sum_{n=1}^{\infty} a_{n}$ is convergent.
(11) Determine whether the geometric series is convergent or divergent. If it is convergent, find its sum.
(a) $3-4+\frac{16}{3}-\frac{64}{9}+\cdots$
(b) $10-2+0.4-0.08+\cdots$
(c) $1+0.4+0.16+0.064+\cdots$
(d) $\sum_{n=0}^{\infty} \frac{\pi^{n}}{3^{n+1}}$
(12) Determine whether the series is convergent or divergent. If it is convergent, find its sum.
(a) $\sum_{n=1}^{\infty} \frac{n-1}{3 n-1}$
(c) $\sum_{k=2}^{\infty} \frac{k^{2}}{k^{2}-1}$
(d) $\sum_{n=1}^{\infty} \arctan$
(b) $\sum_{n=1}^{\infty} \frac{1+3^{n}}{2^{n}}$
(13) Determine whether the series is convergent or divergent by expressing s_{n} as a telescoping sum. If it is convergent, find its sum.
(a) $\sum_{n=2}^{\infty} \frac{2}{n^{2}-1}$
(b) $\sum_{n=1}^{\infty} \ln \frac{n}{n+1}$
(14) Find the values of x for which the series converges. Find the sum of the series for those values of x.
(a) $\sum_{n=0}^{\infty} \frac{(x+3)^{n}}{2^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{x^{n}}{3^{n}}$
(15) If the n-th partial sum of a series $\sum_{n=1}^{\infty} a_{n}$ is

$$
s_{n}=\frac{n-1}{n+1}
$$

find a_{n} and $\sum_{n=1}^{\infty} a_{n}$.
(16) Use the Integral Test to determine whether the series is convergent or divergent.
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{5}}$
(b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+4}}$
(17) Use the Comparison Test to determine whether the series is convergent or divergent.
(a) $\sum_{n=1}^{\infty} \frac{n}{2 n^{3}+1}$
(b) $\sum_{n=2}^{\infty} \frac{n^{3}}{n^{4}-1}$
(18) Find the values of p for which the following series is convergent.

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}
$$

(19) Determine whether the series is convergent or divergent.
(a) $\sum_{n=1}^{\infty} \frac{2}{n^{0.85}}$
(e) $\sum_{n=1}^{\infty} \sin \left(\frac{1}{n}\right)$
(i) $\sum_{n=1}^{\infty} \frac{4+3^{n}}{2^{n}}$
(b) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$
(f) $\sum_{n=1}^{\infty} n e^{-n}$
(j) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}+1}}$
(c) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+9}$
(g) $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{n^{2}+1}$
(d) $\sum_{n=1}^{\infty} \frac{n^{2}-5 n}{n^{3}+n+1}$
(h) $\sum_{n=1}^{\infty} \frac{n-1}{n 4^{n}}$
(20) Test the series for convergence or divergence.
(a) $\frac{4}{7}-\frac{4}{8}+\frac{4}{9}-\frac{4}{10}+\frac{4}{11}-\cdots$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln (n+4)}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n+1}$
(d) $\sum_{n=1}^{\infty}(-1)^{n} \cos \left(\frac{\pi}{n}\right)$
(21) Determine whether the series is absolutely convergent.
(a) $\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n^{3}}$
(c) $\sum_{n=1}^{\infty} \frac{n!}{100^{n}}$
(b) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{\sqrt{n}}{n+1}$
(d) $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$

