Rolle's Theorem Let f be a function that satisfies the following three hypotheses:

1. f is continuous on the closed interval $[a, b]$.
2. f is differentiable on the open interval (a, b).
3. $f(a)=f(b)$

Then there is a number c in (a, b) such that $f^{\prime}(c)=0$.

A real-life example of Rolle's Theorem If you throw a ball upward, then its initial displacement is zero $(f(a)=0)$, and when you catch it again, its displacement is zero $(f(b)=0)$. The displacement function $s(t)$ satisfies the conditions of Rolle's Theorem: continuity on $[a, b]$ and differentiability on (a, b). Rolle's Theorem says that there is some instant of time $t=c$ between a and b when $s^{\prime}(c)=0$; that is, the velocity is 0 , and that will be when the ball reaches its maximum height.

1. Verify Rolle's Theorem for

$$
f(x)=x^{4}-x^{2} \quad \text { on } \quad[-2,2]
$$

2. Show that $f(x)=x^{3}+9 x-4$ has precisely one real root.
3. Determine if Rolle's Theorem can be applied to the function $f(x)=\frac{4 x+3}{x^{2}+1}$ on the interval $\left[0, \frac{4}{3}\right]$ and if it can, find all numbers c satisfying the conclusion of the theorem.

The Mean Value Theorem Let f be a function that satisfies the following hypotheses:

1. f is continuous on the closed interval $[a, b]$.
2. f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

or, equivalently,

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

A real-life example of the Mean Value Theorem If an object moves in a straight line with position function $s=f(t)$, then the average velocity between $t=a$ and $t=b$ is

$$
\frac{f(b)-f(a)}{b-a}
$$

and the velocity at $t=c$ is $f^{\prime}(c)$. Thus the Mean Value Theorem tells us that at some time $t=c$ between a and b the instantaneous velocity $f^{\prime}(\mathrm{c})$ is equal to that average velocity. For instance, if a car traveled 180 km in 2 hours, then the speedometer must have read $90 \mathrm{~km} / \mathrm{h}$ at least once.
4. Determine if the Mean Value Theorem can be applied to the function $f(x)=\frac{x-4}{x-3}$ on the interval [4,6] and if it can, find all numbers c satisfying the conclusion of the theorem.
5. Verify that the function satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.

$$
f(x)=2 x^{2}-3 x+1, \quad[0,2]
$$

6. Two runners start a race at the same time and finish in a tie. Prove that at some time during the race they have the same speed. [Hint: Consider $f(t)=g(t)-h(t)$, where g and h are the position functions of the two runners.]
7. Let $f(x)=(x-3)^{-2}$. Show that there is no value of c in $(1,4)$ such that $f(4)-f(1)=f^{\prime}(c)(4-1)$. Why does this not contradict the Mean Value Theorem?
8. At 2:00 PM a car's speedometer reads $30 \mathrm{mi} / \mathrm{h}$. At 2:10 PM it reads $50 \mathrm{mi} / \mathrm{h}$. Show that at some time between 2:00 and $2: 10$ the acceleration is exactly $120 \mathrm{mi} / \mathrm{h}^{2}$.
