(1) Let $x_{1}=-7$ and $x_{n+1}=\frac{3}{7} x_{n}-2$.
(a) Prove that $x_{n}<-7 / 2$ for all $n \geq 1$.
(b) Prove that $x_{n+1}>x_{n}$ for all $n \geq 1$.
(2) Let $c, r \in \mathbb{R}$ and assume $r \neq 1$. Prove that $\sum_{k=0}^{n} c r^{k}=\frac{c\left(1-r^{n+1}\right)}{1-r}$ for any integer $n \geq 1$.
(3) For each $n \in \mathbb{N}$, every set of n real numbers has a largest element.
(4) Define $a_{1}=4$ and $a_{n+1}=\frac{1}{6} a_{n}^{2}+1$ for $n \geq 1$. Prove that $a_{n}>1$ for all n and that $a_{n+1}<a_{n}$ for all integers $n \geq 1$.
(5) Prove that there exists a real number β such that $\beta^{2}=2$.
(6) For any $x, y \in \mathbb{R}$, prove the following:
(a) If $x+y=x$, then $y=0$
(b) If $x+y=0$, then $y=-x$
(c) If $x \neq 0$ and $x \cdot y=x$, then $y=1$
(d) If $x \neq 0$ and $x \cdot y=1$, then $y=1 / x$
(e) If $x \neq 0$ and $y \neq 0$, then $x \cdot y \neq 0$
(f) $\left|\frac{x}{y}\right|=\frac{|x|}{|y|}$ if $y \neq 0$
(g) $-|x| \leq x \leq|x|$
(h) $|x| \leq z \Leftrightarrow-z \leq x \leq z$
(i) $||y|-|x|| \leq|y-x|$
(7) For any positive integer n and any real numbers x_{1} through $x_{n},\left|\sum_{k=1}^{n} x_{k}\right| \leq \sum_{k=1}^{n}\left|x_{k}\right|$.
(8) Prove that the set of irrational numbers is dense in \mathbb{R}. (Hint: Given $a<b$, apply the density of the set of rationals to the interval $(a-\sqrt{2}, b-\sqrt{2})$.)
(9) Suppose $a>b>0$. Prove that $\sqrt{a}>\sqrt{b}$.
(10) Prove that for every real number x, there exists an integer n such that $n \leq x<n+1$. We call n the greatest integer of x and write $n=\lfloor x\rfloor$.

