(1) Calculate the volume V of the solid obtained by rotating the region under $y=x^{2}$ about the x-axis for $0 \leq x \leq 2$.
(2) Find the volume V obtained by revolving the region between $y=x^{2}+4$ and $y=2$ about the x-axis for $1 \leq x \leq 3$.
(3) Find the volume of the solid obtained by rotating about the x-axis the region under the curve $y=\sqrt{x}$ from 0 to 1 .
(4) Find the volume of the solid obtained by rotating the region bounded by $y=x^{3}, y=8$, and $x=0$ about the y-axis.
(5) The region R enclosed by the curves $y=x$ and $y=x^{2}$ is rotated about the x-axis. Find the volume of the resulting solid.
(6) Find the volume of the solid obtained by rotating the region in Problem 5 about the line $y=2$.
(7) Find the volume of the solid obtained by rotating the region in Problem 5 about the line $x=-1$.

