
MATH 361 Real Analysis Worksheet 10 Spring 2024

(1) Prove the Squeeze Theorem using the ϵ-δ definition of a functional limit.

(2) Show using the ϵ-δ definition that if c is an isolated point of A ⊆ R, then f : A → R is continuous at c.

(3) Let g(x) = 3
√
x.

(a) Prove that g is continuous at c = 0.

(b) Prove that g is continuous at a point c ̸= 0. (The identity a3 − b3 = (a − b)(a2 + ab + b2) will be
helpful.)

(4) Provide an example of each or explain why the request is impossible.

(a) Two functions f and g, neither of which is continuous at 0 but such that f(x)g(x) and f(x) + g(x)
are continuous at 0.

(b) A function f(x) continuous at 0 and g(x) not continuous at 0 such that f(x) + g(x) is continuous at
0.

(c) A function f(x) continuous at 0 and g(x) not continuous at 0 such that f(x)g(x) is continuous at 0.

(d) A function f(x) not continuous at 0 such that f(x) + 1
f(x) is continuous at 0.

(e) A function f(x) not continuous at 0 such that [f(x)]3 is continuous at 0.

(5) (Composition of Continuous Functions) Let f : A → R and g : B → R. If f is continuous at c ∈ A, and
if g is continuous at f(c) ∈ B, then g ◦ f is continuous at c.

(a) Supply a proof of this theorem using the ϵ-δ definition of continuity.

(b) Give another proof of this theorem using the sequential characterization of continuity

(6) Assume f and g are defined on all of R and that lim
x→p

f(x) = q and lim
x→q

g(x) = r.

(a) Give an example to show that it may not be true that

lim
x→p

g(f(x)) = r.

(b) Show that the result in (a) does follow if we assume f and g are continuous.

(c) Does the result in (a) hold if we only assume f is continuous? How about if we only assume that g
is continuous?

(7) (Contraction Mapping Theorem). Let f be a function defined on all of R, and assume there is a constant
c such that 0 < c < 1 and

|f(x)− f(y)| ≤ c|x− y|
for all x, y ∈ R.

(a) Show that f is continuous on R.

(b) Pick some point y1 ∈ R and construct a sequence

(y1, f(y1), f(f(y1)), . . .).

In general, if yn+1 = f(yn), show that the resulting sequence (yn) is a Cauchy sequence. Hence we
may let y = lim yn.

(c) Prove that y is a fixed point of f (i.e., f(y) = y) and that it is unique in this regard.

(d) Finally, prove that if x is any arbitrary point in R, then the sequence (x, f(x), f(f(x)), . . .) converges
to y defined in (b).
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(8) Assume that h : R → R is continuous on R and let K = {x : h(x) = 0}. Show that k is a closed set.

(9) Decide if the following claims are true or false, providing either a short proof or counterexample to justify
each conclusion. Assume throughout that g is defined and continuous on all of R.

(a) If g(x) ≥ 0 for all x < 1, then g(1) ≥ 0 as well.

(b) If g(r) = 0 for all r ∈ Q, then g(x) = 0 for all x ∈ R.

(c) If g(x0) > 0 for a single point x0 ∈ R, then g(x) is in fact strictly positive for uncountably many
points.

(10) Let F ⊆ R be a nonempty closed set and define g(x) = inf{|x − a| : a ∈ F}. Show that g is continuous
on all of R and g(x) ̸= 0 for all x ̸∈ F .

(11) Let f be a function defined on all of R that satisfies the additive condition f(x+ y) = f(x) + f(y) for all
x, y ∈ R.

(a) Show that f(0) = 0 and that f(−x) = −f(x) for all x ∈ R.

(b) Let k = f(1). Show that f(n) = kn for all n ∈ N, and then prove that f(z) = kz for all z ∈ Z. Now,
prove that f(r) = kr for any rational number r.

(c) Show that if f is continuous at x = 0, then f is continuous at every point in R and conclude that
f(x) = kx for all x ∈ R. Thus, any additive function that is continuous at x = 0 must necessarily be
a linear function through the origin.

(12) Observe that if a and b are real numbers, then

max{a, b} =
1

2
[(a+ b) + |a− b|].

(a) Show that if f1, f2, . . . , fn are continuous functions, then

g(x) = max{f1(x), f2(x), . . . , fn(x)}
is a continuous function.

(b) Let’s explore whether the result in (a) extends to the infinite case. For each n ∈ N, define fn on R by

fn(x) =

{
1 if |x| ≥ 1/n
n|x| if |x| < 1/n

Now explicitly compute h(x) = sup{f1(x), f2(x), . . . , fn(x)}.


