(1) Prove the Squeeze Theorem using the $\epsilon-\delta$ definition of a functional limit.
(2) Show using the $\epsilon-\delta$ definition that if c is an isolated point of $A \subseteq \mathbb{R}$, then $f: A \rightarrow \mathbb{R}$ is continuous at c.
(3) Let $g(x)=\sqrt[3]{x}$.
(a) Prove that g is continuous at $c=0$.
(b) Prove that g is continuous at a point $c \neq 0$. (The identity $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$ will be helpful.)
(4) Provide an example of each or explain why the request is impossible.
(a) Two functions f and g, neither of which is continuous at 0 but such that $f(x) g(x)$ and $f(x)+g(x)$ are continuous at 0 .
(b) A function $f(x)$ continuous at 0 and $g(x)$ not continuous at 0 such that $f(x)+g(x)$ is continuous at 0 .
(c) A function $f(x)$ continuous at 0 and $g(x)$ not continuous at 0 such that $f(x) g(x)$ is continuous at 0 .
(d) A function $f(x)$ not continuous at 0 such that $f(x)+\frac{1}{f(x)}$ is continuous at 0 .
(e) A function $f(x)$ not continuous at 0 such that $[f(x)]^{3}$ is continuous at 0 .
(5) (Composition of Continuous Functions) Let $f: A \rightarrow \mathbb{R}$ and $g: B \rightarrow \mathbb{R}$. If f is continuous at $c \in A$, and if g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at c.
(a) Supply a proof of this theorem using the $\epsilon-\delta$ definition of continuity.
(b) Give another proof of this theorem using the sequential characterization of continuity
(6) Assume f and g are defined on all of \mathbb{R} and that $\lim _{x \rightarrow p} f(x)=q$ and $\lim _{x \rightarrow q} g(x)=r$.
(a) Give an example to show that it may not be true that

$$
\lim _{x \rightarrow p} g(f(x))=r
$$

(b) Show that the result in (a) does follow if we assume f and g are continuous.
(c) Does the result in (a) hold if we only assume f is continuous? How about if we only assume that g is continuous?
(7) (Contraction Mapping Theorem). Let f be a function defined on all of \mathbb{R}, and assume there is a constant c such that $0<c<1$ and

$$
|f(x)-f(y)| \leq c|x-y|
$$

for all $x, y \in \mathbb{R}$.
(a) Show that f is continuous on \mathbb{R}.
(b) Pick some point $y_{1} \in \mathbb{R}$ and construct a sequence

$$
\left(y_{1}, f\left(y_{1}\right), f\left(f\left(y_{1}\right)\right), \ldots\right)
$$

In general, if $y_{n+1}=f\left(y_{n}\right)$, show that the resulting sequence $\left(y_{n}\right)$ is a Cauchy sequence. Hence we may let $y=\lim y_{n}$.
(c) Prove that y is a fixed point of f (i.e., $f(y)=y$) and that it is unique in this regard.
(d) Finally, prove that if x is any arbitrary point in \mathbb{R}, then the sequence $(x, f(x), f(f(x)), \ldots)$ converges to y defined in (b).
(8) Assume that $h: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on \mathbb{R} and let $K=\{x: h(x)=0\}$. Show that k is a closed set.
(9) Decide if the following claims are true or false, providing either a short proof or counterexample to justify each conclusion. Assume throughout that g is defined and continuous on all of \mathbb{R}.
(a) If $g(x) \geq 0$ for all $x<1$, then $g(1) \geq 0$ as well.
(b) If $g(r)=0$ for all $r \in \mathbb{Q}$, then $g(x)=0$ for all $x \in \mathbb{R}$.
(c) If $g\left(x_{0}\right)>0$ for a single point $x_{0} \in \mathbb{R}$, then $g(x)$ is in fact strictly positive for uncountably many points.
(10) Let $F \subseteq \mathbb{R}$ be a nonempty closed set and define $g(x)=\inf \{|x-a|: a \in F\}$. Show that g is continuous on all of \mathbb{R} and $g(x) \neq 0$ for all $x \notin F$.
(11) Let f be a function defined on all of \mathbb{R} that satisfies the additive condition $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$.
(a) Show that $f(0)=0$ and that $f(-x)=-f(x)$ for all $x \in \mathbb{R}$.
(b) Let $k=f(1)$. Show that $f(n)=k n$ for all $n \in \mathbb{N}$, and then prove that $f(z)=k z$ for all $z \in \mathbb{Z}$. Now, prove that $f(r)=k r$ for any rational number r.
(c) Show that if f is continuous at $x=0$, then f is continuous at every point in \mathbb{R} and conclude that $f(x)=k x$ for all $x \in \mathbb{R}$. Thus, any additive function that is continuous at $x=0$ must necessarily be a linear function through the origin.
(12) Observe that if a and b are real numbers, then

$$
\max \{a, b\}=\frac{1}{2}[(a+b)+|a-b|]
$$

(a) Show that if $f_{1}, f_{2}, \ldots, f_{n}$ are continuous functions, then

$$
g(x)=\max \left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}
$$

is a continuous function.
(b) Let's explore whether the result in (a) extends to the infinite case. For each $n \in \mathbb{N}$, define f_{n} on \mathbb{R} by

$$
f_{n}(x)= \begin{cases}1 & \text { if }|x| \geq 1 / n \\ n|x| & \text { if }|x|<1 / n\end{cases}
$$

Now explicitly compute $h(x)=\sup \left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$.

