1. Compute the derivatives.
(a) $y=\tan ^{3} x+\tan \left(x^{3}\right)$
(d) $y=\frac{\cos (1+x)}{1+\cos x}$
(b) $y=\sqrt{4-3 \cos x}$
(e) $y=\sqrt{\cos 2 x+\sin 4 x}$
(c) $y=\sin (\sqrt{\sin \theta+1})$
(f) $y=\sec \left(\sqrt{t^{2}-9}\right)$
2. The displacement of a particle on a vibrating string is given by the equation $s(t)=10+\frac{1}{4} \sin (10 \pi t)$ where s is measured in centimeters and t in seconds. Find the velocity of the particle after t seconds.
3. Calculate the derivative of the sine function as a function of degrees rather than radians.
4. Imagine a sphere whose radius r increases at a rate of $3 \mathrm{~cm} / \mathrm{s}$. At what rate is the volume V of the sphere increasing when $r=10 \mathrm{~cm}$?
5. Find an equation of the tangent line to the curve $y=2 /\left(1+e^{-x}\right)$ at the point $(0,1)$.
6. Find all points on the graph of the function $f(x)=2 \sin x+\sin ^{2} x$ at which the tangent line is horizontal.
7. At what point on the curve $y=\sqrt{1+2 x}$ is the tangent line perpendicular to the line $6 x+2 y=1$?
8. If $g(x)=\sqrt{f(x)}$, where the graph of f is shown, evaluate $g^{\prime}(3)$.

