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Some Conjectures in Graph The-

ory



Definitions

Graphs

• A graph G is a pair G = (V ,E ), where V is a finite set of elements,

and E is a finite list (sets with repetitions) of pairs of elements from

V .

• The elements of V are called vertices of (the graph) G .

• The elements of E are called edges of (the graph) G .
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Definitions

An example of a graph

If V = {a,b,c ,1,2} and E =< {1,2},{a,b},{1,2},{b,c},{a,c},{b,c}>,

then G = (V ,E ) is a graph.

1 2 a

b

c

Figure 1: The drawing of G = (V ,E).

Simple and parallel edges of G

{1,2} and {b,c} have multiplicity two in G .They are called multi-edges or

parallel edges of G . Other edges have multiplicity one and they are called

simple edges of G .
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Definitions

Graphs

• A graph may contain parallel edges, but no loops.

• A simple graph contains no loops or parallel edges.

• The degree of a vertex is the number of edges incident to it.
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Definitions

2 2 2

3

3

Figure 2: Degrees of vertices of G = (V ,E).
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Definitions

Some more definitions

• A graph is cubic, if the degree of each vertex is 3.

• A graph is k-regular, if any vertex has degree k.

• A graph is k-edge-colorable, if its edges can be colored with colors

{1, ...,k} such that adjacent edges receive different colors.

• The least k, for which a graph G is k-edge-colorable, is called

chromatic index of G and is denoted by χ ′(G ).

1

2
1

2

3 4

Figure 3: An example of a graph G = (V ,E) with χ ′(G) = 4.
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Theorems of Shannon and Vizing

Maximum Degree and Multiplicity of a Graph

For a graph G , let ∆(G ) be the maximum degree of a vertex of G . Let

µ(G ) be the maximum multiplicity of an edge of G .

Theorem (Shannon)

For any graph G: ∆(G )≤ χ ′(G )≤ 3∆(G )
2 .

Theorem (Vizing)

For any graph G: ∆(G )≤ χ ′(G )≤∆(G ) + µ(G ).

Corollary (Vizing)

For any simple graph G (i.e. µ(G ) = 1): ∆(G )≤ χ ′(G )≤∆(G ) + 1.
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Some examples and results

1

2
1

2

3 4

Figure 4: An example of a graph G = (V ,E) with ∆(G) = 3, µ(G) = 2 and

χ ′(G) = 4.

Corollary

If G is a cubic graph, then

3≤ χ
′(G )≤ 4.

Theorem (Holyer)

The problem of deciding whether a given cubic graph G has χ ′(G ) = 3 is

NP-complete.
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Definitions

Independent edges and Matchings

• Two edges of a graph are independent if they do not share a vertex.

• A matching is a set of edges of a graph such that any two edges in

it are independent.

• A maximum matching is a matching containing maximum number

of edges.

• A matching is perfect, if it contains |V |2 edges.

• Any vertex of a graph is incident to an edge from a perfect matching.

Figure 5: An example of a matching.
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An example of a perfect matching in a graph

An example

Figure 6: A perfect matching in K4.
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Bridges in graphs

Definition

An edge e of a graph G is a bridge, if G−e has more connected components

than G does.

e

Figure 7: e is a bridge in a cubic graph G .
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Cubic graphs and perfect matchings

Theorem (Petersen)

Any edge of a bridgeless cubic graph G belongs to a perfect matching of

G.

Definition

For a bridgeless cubic graph G , let k(G ) be the smallest number of perfect

matchings covering the edge-set of G .

Observation

If G is a cubic graph, then

χ
′(G ) = 3 if and only if k(G ) = 3.
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The Petersen graph P10 and its 6 perfect matchings

The Petersen graph

Figure 8: The graph P10.

The Petersen graph is the smallest bridgeless cubic graph G with χ ′(G ) = 4.
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The Petersen graph

6 perfect matchings of the Petersen graph

• Petersen graph (P10) has 15 edges, and 6 perfect matchings.

• There are
(

6
2

)
= 15 pairs of perfect matchings of P10.

• For each edge e ∈ E (P10), there are 2 distinct perfect matchings M

and M ′, such that M ∩M ′ = {e}.
• k(P10) = 5.
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Conjectures of Berge and Berge-Fulkerson

Conjecture (Berge)

For any bridgeless cubic graph G, k(G )≤ 5.

Conjecture (Berge-Fulkerson)

Any bridgeless cubic graph G contains 6 (not necessarily distinct) perfect

matchings, such that each edge of G belongs to exactly 2 of these perfect

matchings.

Conjecture (Berge-Fulkerson restated)

For any bridgeless cubic graph G we have

χ
′(2G ) = 6.
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Conjectures of Berge and Berge-Fulkerson

Observation (3-edge-colorable cubic graphs)

Berge-Fulkerson conjecture holds for 3-edge-colorable cubic graphs G (i.e.

χ ′(G ) = 3).

Observation

Berge-Fulkerson conjecture implies Berge conjecture.

Theorem (G. Mazzuoccolo, 2011)

Conjectures of Berge and Berge-Fulkerson are equivalent.
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Definitions

Cycles and Even Subgraphs

• A cycle of a graph G is a connected 2-regular subgraph of G .

• An even subgraph H of a graph G is a subgraph of G , such that

each vertex of H has even degree in H.

• A cycle cover of G is a system C = (C1, ...,Ct) of (not necessarily

distinct) cycles of G , such that each edge of G belongs to at least

one of cycles of C .

• For i = 1, ..., t let l(Ci ) be the number of edges of Ci , and let

l(C ) = ∑
t
i=1 l(Ci ).

• l(C ) is called the length of the cycle cover C .
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Other Conjectures

Conjecture (Cycle Double Cover Conjecture)

Any bridgeless (not necessarily cubic) graph G has a cycle cover C =

(C1, ...,Ct), such that each edge of G belongs to exactly 2 of the cycles of

C .

Conjecture ((5,2) Even Subgraph Cover Conjecture)

Any bridgeless (not necessarily cubic) graph G has 5 even subgraphs

(Ev1, ...,Ev5), such that each edge of G belongs to exactly 2 of the even

subgraphs.

Conjecture (Shortest Cycle Cover Conjecture)

Any bridgeless (not necessarily cubic) graph G has a cycle cover C =

(C1, ...,Ct), such that l(C )≤ 7
5 · |E |.
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The relationship among the three conjectures

Observation

(5,2) Even Subgraph Cover Conjecture implies Cycle Double Cover Con-

jecture.

Theorem (U. Jamshy, M. Tarsi, 1992)

Shortest Cycle Cover Conjecture implies Cycle Double Cover Conjecture.
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Definitions

Definition

For a graph G and its vertex x ∈ V (G ), let ∂G (x) be the set of edges of

G that are incident with x .

Definition

If G and H are two cubic graphs, then an H-coloring of G is a mapping

f : E (G )→ E (H) such that for each vertex x ∈ V (G ), there is a vertex

y ∈ V (H) with f (∂G (x)) = ∂H(y).

Definition

If G admits an H-coloring f , then we will write H ≺ G .
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An example of an H-coloring

An example: H ≺ G

H

1

2 3

4

a1

a2

a3

a4

a5

a5

a6

a6

G

1 3

4

1 3

4

a1 a2

a4 a3

a4 a3

a6

a6

a5

a5a5

a5

Figure 10: An example of an H-coloring of G .
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Some properties

Transitivity

If H ≺ G and K ≺ H, then K ≺ G .

3-edge-colorable cubic graphs

If G is a 3-edge-colorable cubic graph, then for any cubic graph H: H ≺G .

Adjacent edges

If H ≺ G and f is an H-coloring of G , then for any adjacent edges e and

e ′ of G , one has: f (e) and f (e ′) are adjacent in H.

Adjacent edges: Opposite statement

If H is triangle-free, and a mapping f : E (G )→ E (H) has the property

that for any adjacent edges e and e ′ of G , f (e) and f (e ′) are adjacent in

H, then f is an H-coloring of G .
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Some properties

Lemma

Suppose that G and H are cubic graphs with H ≺ G, and let f be an

H-coloring of G. Then:

(a) If M is any matching of H, then f −1(M) is a matching of G;

(b) χ ′(G )≤ χ ′(H), where χ ′(G ) is the chromatic index of G;

(c) If M is a perfect matching of H, then f −1(M) is a perfect matching

of G;

(d) k(G )≤ k(H).

(e) For every even subgraph C of H, f −1(C ) is an even subgraph of G;

(f) For every bridge e of G, the edge f (e) is a bridge of H.

(g) If H is bridgeless, then G is also bridgeless.
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Petersen coloring conjecture

Jaeger’s unifying conjecture

In 1988, Jaeger presented a conjecture, that has unified the conjectures

about perfect matchings and cycle covers.

Conjecture (P10-conjecture, 1988)

For any bridgeless cubic graph G, one has: P10 ≺ G.
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Consequences of P10-conjecture

Observation

P10-conjecture implies Berge-Fulkerson conjecture.

Observation

P10-conjecture implies (5,2) Even Subgraph Cover Conjecture.

Observation

P10-conjecture implies Shortest Cycle Cover Conjecture.
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The relationship among the six conjectures

The relationship

P10-Conjecture

Berge-Fulkerson

Conjecture

Berge Conjecture

(5,2) Even Subgraph

Cover Conjecture

Shortest Cycle

Cover Conjecture

Cycle Double

Cover Conjecture

Figure 11: The relationship among the six conjectures.
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Normal edge-colorings of cubic

graphs



Snarks and their Petersen colorings

Snark

A snark is a bridgeless cubic graph that is not 3-edge-colorable.

Observation

If a cubic graph G admits a P10-coloring f , such that for an edge e of P10

f −1(e) = /0, then G is 3-edge-colorable.

Corollary

If G is a snark, then any P10-coloring of G must use all edges of P10.
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Poor, rich edges and normal edge-colorings of cubic graphs

Definition

Let f be a k-edge-coloring of a cubic graph G , and let Sf (w) be the set

of colors of edges of G incident to the vertex w . Then an edge e = uv is

• poor, if |Sf (u)∪Sf (v)|= 3,

• rich, if |Sf (u)∪Sf (v)|= 5.

Definition

A k-edge-coloring f of a cubic graph G is normal, if any edge of G is poor

or rich in f . Let χN(G ) be the smallest k for which G admits a normal

k-edge-coloring. Clearly, χN(G )≥ 3 for any cubic graph G . χN(G ) = 3, if

and only if χ ′(G ) = 3.
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An example of a normal edge-coloring of a cubic graph

An example

v1

v2

v3

v4

v5

w1

w2

w3

w4

w5

1

1 1

2 2

3 3

4 4

5 5

6 6

7 7

Figure 12: A cubic graph that requires 7 colors in a normal coloring.

The bridge is poor. All other edges are rich. It can be shown that χN(G ) =

7.
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An example of a cubic graph without a normal k-edge-coloring

Question

Does any cubic graph admit a normal k-edge-coloring for some k?

An example

Figure 13: An example of a cubic graph that does not admit a normal coloring.
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Why normal colorings are important

Proposition (Jaeger, 1988)

A cubic graph G admits a P10-coloring (i.e. P10 ≺ G), if and only if

χ ′N(G )≤ 5.

Conjecture (P10-conjecture restated)

For any bridgeless cubic graph G, we have χ ′N(G )≤ 5.
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Our result



A question

Question

What is the smallest k, such that for any simple cubic graph G we have

χ ′N(G )≤ k?

Summary of prior results

• By our previous considerations, we have k ≥ 7.

• L. D. Andersen in 1992 proved that any simple cubic graph admits a

10-edge-coloring, such that each edge is rich. Thus k ≤ 10.

• R. Šámal and H. B́ılková in 2012 proved that any simple cubic graph

admits a normal 9-edge-coloring. Thus k ≤ 9.

Theorem (Our main result)

For any simple cubic graph G, we have χ ′N(G )≤ 7.
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Future work



Improving our result

Bridgeless cubic graphs

• Proving χ ′N(G )≤ 7 in the class of bridgeless cubic graphs is

relatively easy (8-flow theorem).

• Proving χ ′N(G )≤ 5 in the class of bridgeless cubic graphs amounts

to proving P10-conjecture, which is hard.

Conjecture (Intermediate conjecture)

For any bridgeless cubic graph G, we have χ ′N(G )≤ 6.

41
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THANK YOU!
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