Normal edge-colorings of cubic graphs

Vahan Mkrtchyan
October 23, 2023

Outline

Table of Contents

1. Some Conjectures in Graph Theory
2. Normal edge-colorings of cubic graphs
3. Our result
4. Future work

Collaborators

Collaborators

Collaborators

Collaborators

Collaborators

Giuseppe Mazzuoccolo, Department of Informatics, Verona University, Verona, Italy.

Some Conjectures in Graph Theory

Definitions

Definitions

Graphs

Definitions

Graphs

- A graph G is a pair $G=(V, E)$, where V is a finite set of elements, and E is a finite list (sets with repetitions) of pairs of elements from V.

Definitions

Graphs

- A graph G is a pair $G=(V, E)$, where V is a finite set of elements, and E is a finite list (sets with repetitions) of pairs of elements from V.
- The elements of V are called vertices of (the graph) G.

Definitions

Graphs

- A graph G is a pair $G=(V, E)$, where V is a finite set of elements, and E is a finite list (sets with repetitions) of pairs of elements from V.
- The elements of V are called vertices of (the graph) G.
- The elements of E are called edges of (the graph) G.

Definitions

Definitions

An example of a graph

Definitions

An example of a graph

If $V=\{a, b, c, 1,2\}$ and $E=<\{1,2\},\{a, b\},\{1,2\},\{b, c\},\{a, c\},\{b, c\}>$, then $G=(V, E)$ is a graph.

Definitions

An example of a graph

If $V=\{a, b, c, 1,2\}$ and $E=<\{1,2\},\{a, b\},\{1,2\},\{b, c\},\{a, c\},\{b, c\}>$, then $G=(V, E)$ is a graph.

Figure 1: The drawing of $G=(V, E)$.

Definitions

An example of a graph

If $V=\{a, b, c, 1,2\}$ and $E=<\{1,2\},\{a, b\},\{1,2\},\{b, c\},\{a, c\},\{b, c\}>$, then $G=(V, E)$ is a graph.

Figure 1: The drawing of $G=(V, E)$.

Simple and parallel edges of G
$\{1,2\}$ and $\{b, c\}$ have multiplicity two in G.

Definitions

An example of a graph

If $V=\{a, b, c, 1,2\}$ and $E=<\{1,2\},\{a, b\},\{1,2\},\{b, c\},\{a, c\},\{b, c\}>$, then $G=(V, E)$ is a graph.

Figure 1: The drawing of $G=(V, E)$.

Simple and parallel edges of G
$\{1,2\}$ and $\{b, c\}$ have multiplicity two in G. They are called multi-edges or parallel edges of G.

Definitions

An example of a graph

If $V=\{a, b, c, 1,2\}$ and $E=<\{1,2\},\{a, b\},\{1,2\},\{b, c\},\{a, c\},\{b, c\}>$, then $G=(V, E)$ is a graph.

Figure 1: The drawing of $G=(V, E)$.

Simple and parallel edges of G
$\{1,2\}$ and $\{b, c\}$ have multiplicity two in G. They are called multi-edges or parallel edges of G. Other edges have multiplicity one and they are called simple edges of G.

Definitions

Definitions

Graphs

Definitions

Graphs

- A graph may contain parallel edges, but no loops.

Definitions

Graphs

- A graph may contain parallel edges, but no loops.
- A simple graph contains no loops or parallel edges.

Definitions

Graphs

- A graph may contain parallel edges, but no loops.
- A simple graph contains no loops or parallel edges.
- The degree of a vertex is the number of edges incident to it.

Definitions

Definitions

Figure 2: Degrees of vertices of $G=(V, E)$.

Definitions

Some more definitions

Definitions

Some more definitions

- A graph is cubic, if the degree of each vertex is 3 .

Definitions

Some more definitions

- A graph is cubic, if the degree of each vertex is 3 .
- A graph is k-regular, if any vertex has degree k.

Definitions

Some more definitions

- A graph is cubic, if the degree of each vertex is 3 .
- A graph is k-regular, if any vertex has degree k.
- A graph is k-edge-colorable, if its edges can be colored with colors $\{1, \ldots, k\}$ such that adjacent edges receive different colors.

Definitions

Some more definitions

- A graph is cubic, if the degree of each vertex is 3 .
- A graph is k-regular, if any vertex has degree k.
- A graph is k-edge-colorable, if its edges can be colored with colors $\{1, \ldots, k\}$ such that adjacent edges receive different colors.
- The least k, for which a graph G is k-edge-colorable, is called chromatic index of G and is denoted by $\chi^{\prime}(G)$.

Definitions

Some more definitions

- A graph is cubic, if the degree of each vertex is 3 .
- A graph is k-regular, if any vertex has degree k.
- A graph is k-edge-colorable, if its edges can be colored with colors $\{1, \ldots, k\}$ such that adjacent edges receive different colors.
- The least k, for which a graph G is k-edge-colorable, is called chromatic index of G and is denoted by $\chi^{\prime}(G)$.

Figure 3: An example of a graph $G=(V, E)$ with $\chi^{\prime}(G)=4$.

Theorems of Shannon and Vizing

Theorems of Shannon and Vizing

Maximum Degree and Multiplicity of a Graph

Theorems of Shannon and Vizing

Maximum Degree and Multiplicity of a Graph
For a graph G, let $\Delta(G)$ be the maximum degree of a vertex of G.

Theorems of Shannon and Vizing

Maximum Degree and Multiplicity of a Graph

For a graph G, let $\Delta(G)$ be the maximum degree of a vertex of G. Let $\mu(G)$ be the maximum multiplicity of an edge of G.

Theorems of Shannon and Vizing

Maximum Degree and Multiplicity of a Graph

For a graph G, let $\Delta(G)$ be the maximum degree of a vertex of G. Let $\mu(G)$ be the maximum multiplicity of an edge of G.

Theorem (Shannon)
For any graph $G: \Delta(G) \leq \chi^{\prime}(G) \leq \frac{3 \Delta(G)}{2}$.

Theorems of Shannon and Vizing

Maximum Degree and Multiplicity of a Graph

For a graph G, let $\Delta(G)$ be the maximum degree of a vertex of G. Let $\mu(G)$ be the maximum multiplicity of an edge of G.

Theorem (Shannon)

For any graph $G: \Delta(G) \leq \chi^{\prime}(G) \leq \frac{3 \Delta(G)}{2}$.
Theorem (Vizing)
For any graph $G: \Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+\mu(G)$.

Theorems of Shannon and Vizing

Maximum Degree and Multiplicity of a Graph

For a graph G, let $\Delta(G)$ be the maximum degree of a vertex of G. Let $\mu(G)$ be the maximum multiplicity of an edge of G.

Theorem (Shannon)

For any graph $G: \Delta(G) \leq \chi^{\prime}(G) \leq \frac{3 \Delta(G)}{2}$.
Theorem (Vizing)
For any graph $G: \Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+\mu(G)$.
Corollary (Vizing)
For any simple graph G (i.e. $\mu(G)=1$): $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.

Some examples and results

Some examples and results

Figure 4: An example of a graph $G=(V, E)$ with $\Delta(G)=3, \mu(G)=2$ and $\chi^{\prime}(G)=4$.

Some examples and results

Figure 4: An example of a graph $G=(V, E)$ with $\Delta(G)=3, \mu(G)=2$ and $\chi^{\prime}(G)=4$.

Corollary

If G is a cubic graph, then

$$
3 \leq \chi^{\prime}(G) \leq 4
$$

Some examples and results

Figure 4: An example of a graph $G=(V, E)$ with $\Delta(G)=3, \mu(G)=2$ and $\chi^{\prime}(G)=4$.

Corollary

If G is a cubic graph, then

$$
3 \leq \chi^{\prime}(G) \leq 4
$$

Theorem (Holyer)

The problem of deciding whether a given cubic graph G has $\chi^{\prime}(G)=3$ is NP-complete.

Definitions

Definitions

Independent edges and Matchings

Definitions

Independent edges and Matchings

- Two edges of a graph are independent if they do not share a vertex.

Definitions

Independent edges and Matchings

- Two edges of a graph are independent if they do not share a vertex.
- A matching is a set of edges of a graph such that any two edges in it are independent.

Definitions

Independent edges and Matchings

- Two edges of a graph are independent if they do not share a vertex.
- A matching is a set of edges of a graph such that any two edges in it are independent.
- A maximum matching is a matching containing maximum number of edges.

Definitions

Independent edges and Matchings

- Two edges of a graph are independent if they do not share a vertex.
- A matching is a set of edges of a graph such that any two edges in it are independent.
- A maximum matching is a matching containing maximum number of edges.
- A matching is perfect, if it contains $\frac{|V|}{2}$ edges.

Definitions

Independent edges and Matchings

- Two edges of a graph are independent if they do not share a vertex.
- A matching is a set of edges of a graph such that any two edges in it are independent.
- A maximum matching is a matching containing maximum number of edges.
- A matching is perfect, if it contains $\frac{|V|}{2}$ edges.
- Any vertex of a graph is incident to an edge from a perfect matching.

Definitions

Independent edges and Matchings

- Two edges of a graph are independent if they do not share a vertex.
- A matching is a set of edges of a graph such that any two edges in it are independent.
- A maximum matching is a matching containing maximum number of edges.
- A matching is perfect, if it contains $\frac{|V|}{2}$ edges.
- Any vertex of a graph is incident to an edge from a perfect matching.

Figure 5: An example of a matching.

An example of a perfect matching in a graph

An example of a perfect matching in a graph

An example

An example of a perfect matching in a graph

An example

Figure 6: A perfect matching in K_{4}.

Bridges in graphs

Bridges in graphs

Definition

An edge e of a graph G is a bridge, if $G-e$ has more connected components than G does.

Bridges in graphs

Definition

An edge e of a graph G is a bridge, if $G-e$ has more connected components than G does.

Figure 7: e is a bridge in a cubic graph G.

Cubic graphs and perfect matchings

Cubic graphs and perfect matchings

Theorem (Petersen)

Cubic graphs and perfect matchings

Theorem (Petersen)
Any edge of a bridgeless cubic graph G belongs to a perfect matching of G.

Cubic graphs and perfect matchings

Theorem (Petersen)
Any edge of a bridgeless cubic graph G belongs to a perfect matching of G.

Definition

Cubic graphs and perfect matchings

Theorem (Petersen)

Any edge of a bridgeless cubic graph G belongs to a perfect matching of G.

Definition

For a bridgeless cubic graph G, let $k(G)$ be the smallest number of perfect matchings covering the edge-set of G.

Cubic graphs and perfect matchings

Theorem (Petersen)

Any edge of a bridgeless cubic graph G belongs to a perfect matching of G.

Definition

For a bridgeless cubic graph G, let $k(G)$ be the smallest number of perfect matchings covering the edge-set of G.

Observation

If G is a cubic graph, then

$$
\chi^{\prime}(G)=3 \text { if and only if } k(G)=3 \text {. }
$$

The Petersen graph P_{10} and its 6 perfect matchings

The Petersen graph P_{10} and its 6 perfect matchings

The Petersen graph

The Petersen graph P_{10} and its 6 perfect matchings

The Petersen graph

Figure 8: The graph P_{10}.

The Petersen graph P_{10} and its 6 perfect matchings

The Petersen graph

Figure 8: The graph P_{10}.

The Petersen graph is the smallest bridgeless cubic graph G with $\chi^{\prime}(G)=4$.

The Petersen graph

The Petersen graph

6 perfect matchings of the Petersen graph

The Petersen graph

6 perfect matchings of the Petersen graph

- Petersen graph $\left(P_{10}\right)$ has 15 edges, and 6 perfect matchings.

The Petersen graph

6 perfect matchings of the Petersen graph

- Petersen graph $\left(P_{10}\right)$ has 15 edges, and 6 perfect matchings.
- There are $\binom{6}{2}=15$ pairs of perfect matchings of P_{10}.

The Petersen graph

6 perfect matchings of the Petersen graph

- Petersen graph $\left(P_{10}\right)$ has 15 edges, and 6 perfect matchings.
- There are $\binom{6}{2}=15$ pairs of perfect matchings of P_{10}.
- For each edge $e \in E\left(P_{10}\right)$, there are 2 distinct perfect matchings M and M^{\prime}, such that $M \cap M^{\prime}=\{e\}$.

The Petersen graph

6 perfect matchings of the Petersen graph

- Petersen graph $\left(P_{10}\right)$ has 15 edges, and 6 perfect matchings.
- There are $\binom{6}{2}=15$ pairs of perfect matchings of P_{10}.
- For each edge $e \in E\left(P_{10}\right)$, there are 2 distinct perfect matchings M and M^{\prime}, such that $M \cap M^{\prime}=\{e\}$.
- $k\left(P_{10}\right)=5$.

Conjectures of Berge and Berge-Fulkerson

Conjectures of Berge and Berge-Fulkerson

Conjecture (Berge)

Conjectures of Berge and Berge-Fulkerson

Conjecture (Berge)
For any bridgeless cubic graph $G, k(G) \leq 5$.

Conjectures of Berge and Berge-Fulkerson

Conjecture (Berge)
For any bridgeless cubic graph $G, k(G) \leq 5$.
Conjecture (Berge-Fulkerson)

Conjectures of Berge and Berge-Fulkerson

Conjecture (Berge)

For any bridgeless cubic graph $G, k(G) \leq 5$.
Conjecture (Berge-Fulkerson)
Any bridgeless cubic graph G contains 6 (not necessarily distinct) perfect matchings, such that each edge of G belongs to exactly 2 of these perfect matchings.

Conjectures of Berge and Berge-Fulkerson

Conjecture (Berge)

For any bridgeless cubic graph $G, k(G) \leq 5$.
Conjecture (Berge-Fulkerson)
Any bridgeless cubic graph G contains 6 (not necessarily distinct) perfect matchings, such that each edge of G belongs to exactly 2 of these perfect matchings.

Conjecture (Berge-Fulkerson restated)

Conjectures of Berge and Berge-Fulkerson

Conjecture (Berge)

For any bridgeless cubic graph $G, k(G) \leq 5$.
Conjecture (Berge-Fulkerson)
Any bridgeless cubic graph G contains 6 (not necessarily distinct) perfect matchings, such that each edge of G belongs to exactly 2 of these perfect matchings.

Conjecture (Berge-Fulkerson restated)
For any bridgeless cubic graph G we have

$$
\chi^{\prime}(2 G)=6 .
$$

Conjectures of Berge and Berge-Fulkerson

Conjectures of Berge and Berge-Fulkerson

Observation (3-edge-colorable cubic graphs)

Conjectures of Berge and Berge-Fulkerson

Observation (3-edge-colorable cubic graphs)

Berge-Fulkerson conjecture holds for 3-edge-colorable cubic graphs G (i.e. $\left.\chi^{\prime}(G)=3\right)$.

Conjectures of Berge and Berge-Fulkerson

Observation (3-edge-colorable cubic graphs)
Berge-Fulkerson conjecture holds for 3-edge-colorable cubic graphs G (i.e. $\left.\chi^{\prime}(G)=3\right)$.

Observation

Conjectures of Berge and Berge-Fulkerson

Observation (3-edge-colorable cubic graphs)

Berge-Fulkerson conjecture holds for 3-edge-colorable cubic graphs G (i.e. $\left.\chi^{\prime}(G)=3\right)$.

Observation
Berge-Fulkerson conjecture implies Berge conjecture.

Conjectures of Berge and Berge-Fulkerson

Observation (3-edge-colorable cubic graphs)
Berge-Fulkerson conjecture holds for 3-edge-colorable cubic graphs G (i.e. $\left.\chi^{\prime}(G)=3\right)$.

Observation
Berge-Fulkerson conjecture implies Berge conjecture.
Theorem (G. Mazzuoccolo, 2011)

Conjectures of Berge and Berge-Fulkerson

Observation (3-edge-colorable cubic graphs)
Berge-Fulkerson conjecture holds for 3-edge-colorable cubic graphs G (i.e. $\left.\chi^{\prime}(G)=3\right)$.

Observation
Berge-Fulkerson conjecture implies Berge conjecture.
Theorem (G. Mazzuoccolo, 2011)
Conjectures of Berge and Berge-Fulkerson are equivalent.

Definitions

Definitions

Cycles and Even Subgraphs

Definitions

Cycles and Even Subgraphs

- A cycle of a graph G is a connected 2-regular subgraph of G.

Definitions

Cycles and Even Subgraphs

- A cycle of a graph G is a connected 2-regular subgraph of G.
- An even subgraph H of a graph G is a subgraph of G, such that each vertex of H has even degree in H.

Definitions

Cycles and Even Subgraphs

- A cycle of a graph G is a connected 2 -regular subgraph of G.
- An even subgraph H of a graph G is a subgraph of G, such that each vertex of H has even degree in H.
- A cycle cover of G is a system $\mathscr{C}=\left(C_{1}, \ldots, C_{t}\right)$ of (not necessarily distinct) cycles of G, such that each edge of G belongs to at least one of cycles of \mathscr{C}.

Definitions

Cycles and Even Subgraphs

- A cycle of a graph G is a connected 2-regular subgraph of G.
- An even subgraph H of a graph G is a subgraph of G, such that each vertex of H has even degree in H.
- A cycle cover of G is a system $\mathscr{C}=\left(C_{1}, \ldots, C_{t}\right)$ of (not necessarily distinct) cycles of G, such that each edge of G belongs to at least one of cycles of \mathscr{C}.
- For $i=1, \ldots, t$ let $I\left(C_{i}\right)$ be the number of edges of C_{i}, and let $I(\mathscr{C})=\sum_{i=1}^{t} I\left(C_{i}\right)$.

Definitions

Cycles and Even Subgraphs

- A cycle of a graph G is a connected 2-regular subgraph of G.
- An even subgraph H of a graph G is a subgraph of G, such that each vertex of H has even degree in H.
- A cycle cover of G is a system $\mathscr{C}=\left(C_{1}, \ldots, C_{t}\right)$ of (not necessarily distinct) cycles of G, such that each edge of G belongs to at least one of cycles of \mathscr{C}.
- For $i=1, \ldots, t$ let $I\left(C_{i}\right)$ be the number of edges of C_{i}, and let $I(\mathscr{C})=\sum_{i=1}^{t} I\left(C_{i}\right)$.
- $I(\mathscr{C})$ is called the length of the cycle cover \mathscr{C}.

Other Conjectures

Other Conjectures

Conjecture (Cycle Double Cover Conjecture)

Other Conjectures

Conjecture (Cycle Double Cover Conjecture)

Any bridgeless (not necessarily cubic) graph G has a cycle cover $\mathscr{C}=$ $\left(C_{1}, \ldots, C_{t}\right)$, such that each edge of G belongs to exactly 2 of the cycles of \mathscr{C}.

Other Conjectures

Conjecture (Cycle Double Cover Conjecture)

Any bridgeless (not necessarily cubic) graph G has a cycle cover $\mathscr{C}=$ $\left(C_{1}, \ldots, C_{t}\right)$, such that each edge of G belongs to exactly 2 of the cycles of \mathscr{C}.

Conjecture ($(5,2)$ Even Subgraph Cover Conjecture)

Other Conjectures

Conjecture (Cycle Double Cover Conjecture)

Any bridgeless (not necessarily cubic) graph G has a cycle cover $\mathscr{C}=$ $\left(C_{1}, \ldots, C_{t}\right)$, such that each edge of G belongs to exactly 2 of the cycles of \mathscr{C}.

Conjecture ($(5,2)$ Even Subgraph Cover Conjecture)
Any bridgeless (not necessarily cubic) graph G has 5 even subgraphs $\left(E v_{1}, \ldots, E v_{5}\right)$, such that each edge of G belongs to exactly 2 of the even subgraphs.

Other Conjectures

Conjecture (Cycle Double Cover Conjecture)

Any bridgeless (not necessarily cubic) graph G has a cycle cover $\mathscr{C}=$ $\left(C_{1}, \ldots, C_{t}\right)$, such that each edge of G belongs to exactly 2 of the cycles of \mathscr{C}.

Conjecture ($(5,2)$ Even Subgraph Cover Conjecture)
Any bridgeless (not necessarily cubic) graph G has 5 even subgraphs $\left(E v_{1}, \ldots, E v_{5}\right)$, such that each edge of G belongs to exactly 2 of the even subgraphs.

Conjecture (Shortest Cycle Cover Conjecture)

Other Conjectures

Conjecture (Cycle Double Cover Conjecture)

Any bridgeless (not necessarily cubic) graph G has a cycle cover $\mathscr{C}=$ $\left(C_{1}, \ldots, C_{t}\right)$, such that each edge of G belongs to exactly 2 of the cycles of \mathscr{C}.

Conjecture ($(5,2)$ Even Subgraph Cover Conjecture)
Any bridgeless (not necessarily cubic) graph G has 5 even subgraphs $\left(E v_{1}, \ldots, E v_{5}\right)$, such that each edge of G belongs to exactly 2 of the even subgraphs.

Conjecture (Shortest Cycle Cover Conjecture)
Any bridgeless (not necessarily cubic) graph G has a cycle cover $\mathscr{C}=$ $\left(C_{1}, \ldots, C_{t}\right)$, such that $I(\mathscr{C}) \leq \frac{7}{5} \cdot|E|$.

The relationship among the three conjectures

The relationship among the three conjectures

Observation

The relationship among the three conjectures

Observation

$(5,2)$ Even Subgraph Cover Conjecture implies Cycle Double Cover Conjecture.

The relationship among the three conjectures

Observation

$(5,2)$ Even Subgraph Cover Conjecture implies Cycle Double Cover Conjecture.

Theorem (U. Jamshy, M. Tarsi, 1992)

The relationship among the three conjectures

Observation

$(5,2)$ Even Subgraph Cover Conjecture implies Cycle Double Cover Conjecture.

Theorem (U. Jamshy, M. Tarsi, 1992)
Shortest Cycle Cover Conjecture implies Cycle Double Cover Conjecture.

The relationship among the five conjectures

The relationship among the five conjectures

The relationship

The relationship among the five conjectures

The relationship

Figure 9: The relationship among the five conjectures.

Definitions

Definitions

Definition

Definitions

Definition

For a graph G and its vertex $x \in V(G)$, let $\partial_{G}(x)$ be the set of edges of G that are incident with x.

Definitions

Definition

For a graph G and its vertex $x \in V(G)$, let $\partial_{G}(x)$ be the set of edges of G that are incident with x.

Definition

Definitions

Definition

For a graph G and its vertex $x \in V(G)$, let $\partial_{G}(x)$ be the set of edges of G that are incident with x.

Definition

If G and H are two cubic graphs,

Definitions

Definition

For a graph G and its vertex $x \in V(G)$, let $\partial_{G}(x)$ be the set of edges of G that are incident with x.

Definition

If G and H are two cubic graphs, then an H-coloring of G is a mapping $f: E(G) \rightarrow E(H)$ such that for each vertex $x \in V(G)$, there is a vertex $y \in V(H)$ with $f\left(\partial_{G}(x)\right)=\partial_{H}(y)$.

Definitions

Definition

For a graph G and its vertex $x \in V(G)$, let $\partial_{G}(x)$ be the set of edges of G that are incident with x.

Definition

If G and H are two cubic graphs, then an H-coloring of G is a mapping $f: E(G) \rightarrow E(H)$ such that for each vertex $x \in V(G)$, there is a vertex $y \in V(H)$ with $f\left(\partial_{G}(x)\right)=\partial_{H}(y)$.

Definition

Definitions

Definition

For a graph G and its vertex $x \in V(G)$, let $\partial_{G}(x)$ be the set of edges of G that are incident with x.

Definition

If G and H are two cubic graphs, then an H-coloring of G is a mapping $f: E(G) \rightarrow E(H)$ such that for each vertex $x \in V(G)$, there is a vertex $y \in V(H)$ with $f\left(\partial_{G}(x)\right)=\partial_{H}(y)$.

Definition
If G admits an H-coloring f, then we will write $H \prec G$.

An example of an H-coloring

An example of an H-coloring

An example: $H \prec G$

An example of an H-coloring

An example: $H \prec G$

Figure 10: An example of an H -coloring of G .

Some properties

Some properties

Transitivity

Some properties

Transitivity
If $H \prec G$ and $K \prec H$, then $K \prec G$.

Some properties

Transitivity
If $H \prec G$ and $K \prec H$, then $K \prec G$.
3-edge-colorable cubic graphs

Some properties

Transitivity
If $H \prec G$ and $K \prec H$, then $K \prec G$.
3-edge-colorable cubic graphs
If G is a 3-edge-colorable cubic graph,

Some properties

Transitivity

If $H \prec G$ and $K \prec H$, then $K \prec G$.
3-edge-colorable cubic graphs
If G is a 3-edge-colorable cubic graph, then for any cubic graph H : $H \prec G$.

Some properties

Transitivity
If $H \prec G$ and $K \prec H$, then $K \prec G$.
3-edge-colorable cubic graphs
If G is a 3-edge-colorable cubic graph, then for any cubic graph H : $H \prec G$.
Adjacent edges

Some properties

Transitivity

If $H \prec G$ and $K \prec H$, then $K \prec G$.
3-edge-colorable cubic graphs
If G is a 3-edge-colorable cubic graph, then for any cubic graph H : $\mathrm{H} \prec G$.

Adjacent edges

If $H \prec G$ and f is an H-coloring of G, then for any adjacent edges e and e^{\prime} of G,

Some properties

Transitivity

If $H \prec G$ and $K \prec H$, then $K \prec G$.
3-edge-colorable cubic graphs
If G is a 3-edge-colorable cubic graph, then for any cubic graph H : $H \prec G$.

Adjacent edges

If $H \prec G$ and f is an H-coloring of G, then for any adjacent edges e and e^{\prime} of G, one has: $f(e)$ and $f\left(e^{\prime}\right)$ are adjacent in H.

Some properties

Transitivity

If $H \prec G$ and $K \prec H$, then $K \prec G$.
3-edge-colorable cubic graphs
If G is a 3-edge-colorable cubic graph, then for any cubic graph H : $H \prec G$.

Adjacent edges

If $H \prec G$ and f is an H-coloring of G, then for any adjacent edges e and e^{\prime} of G, one has: $f(e)$ and $f\left(e^{\prime}\right)$ are adjacent in H.

Adjacent edges: Opposite statement

Some properties

Transitivity

If $H \prec G$ and $K \prec H$, then $K \prec G$.

3-edge-colorable cubic graphs

If G is a 3-edge-colorable cubic graph, then for any cubic graph H : $H \prec G$.

Adjacent edges

If $H \prec G$ and f is an H-coloring of G, then for any adjacent edges e and e^{\prime} of G, one has: $f(e)$ and $f\left(e^{\prime}\right)$ are adjacent in H.

Adjacent edges: Opposite statement

If H is triangle-free, and a mapping $f: E(G) \rightarrow E(H)$ has the property that for any adjacent edges e and e^{\prime} of $G, f(e)$ and $f\left(e^{\prime}\right)$ are adjacent in H,

Some properties

Transitivity

If $H \prec G$ and $K \prec H$, then $K \prec G$.

3-edge-colorable cubic graphs

If G is a 3-edge-colorable cubic graph, then for any cubic graph H : $H \prec G$.

Adjacent edges

If $H \prec G$ and f is an H-coloring of G, then for any adjacent edges e and e^{\prime} of G, one has: $f(e)$ and $f\left(e^{\prime}\right)$ are adjacent in H.

Adjacent edges: Opposite statement

If H is triangle-free, and a mapping $f: E(G) \rightarrow E(H)$ has the property that for any adjacent edges e and e^{\prime} of $G, f(e)$ and $f\left(e^{\prime}\right)$ are adjacent in H, then f is an H-coloring of G.

Some properties

Some properties

Lemma

Some properties

Lemma

Suppose that G and H are cubic graphs with $H \prec G$, and let f be an H-coloring of G.

Some properties

Lemma

Suppose that G and H are cubic graphs with $H \prec G$, and let f be an H-coloring of G. Then:
(a) If M is any matching of H, then $f^{-1}(M)$ is a matching of G;

Some properties

Lemma

Suppose that G and H are cubic graphs with $H \prec G$, and let f be an H-coloring of G. Then:
(a) If M is any matching of H, then $f^{-1}(M)$ is a matching of G;
(b) $\chi^{\prime}(G) \leq \chi^{\prime}(H)$, where $\chi^{\prime}(G)$ is the chromatic index of G;

Some properties

Lemma

Suppose that G and H are cubic graphs with $H \prec G$, and let f be an H-coloring of G. Then:
(a) If M is any matching of H, then $f^{-1}(M)$ is a matching of G;
(b) $\chi^{\prime}(G) \leq \chi^{\prime}(H)$, where $\chi^{\prime}(G)$ is the chromatic index of G;
(c) If M is a perfect matching of H, then $f^{-1}(M)$ is a perfect matching of G;

Some properties

Lemma

Suppose that G and H are cubic graphs with $H \prec G$, and let f be an H-coloring of G. Then:
(a) If M is any matching of H, then $f^{-1}(M)$ is a matching of G;
(b) $\chi^{\prime}(G) \leq \chi^{\prime}(H)$, where $\chi^{\prime}(G)$ is the chromatic index of G;
(c) If M is a perfect matching of H, then $f^{-1}(M)$ is a perfect matching of G;
(d) $k(G) \leq k(H)$.

Some properties

Lemma

Suppose that G and H are cubic graphs with $H \prec G$, and let f be an H-coloring of G. Then:
(a) If M is any matching of H, then $f^{-1}(M)$ is a matching of G;
(b) $\chi^{\prime}(G) \leq \chi^{\prime}(H)$, where $\chi^{\prime}(G)$ is the chromatic index of G;
(c) If M is a perfect matching of H, then $f^{-1}(M)$ is a perfect matching of G;
(d) $k(G) \leq k(H)$.
(e) For every even subgraph C of $H, f^{-1}(C)$ is an even subgraph of G;

Some properties

Lemma

Suppose that G and H are cubic graphs with $H \prec G$, and let f be an H-coloring of G. Then:
(a) If M is any matching of H, then $f^{-1}(M)$ is a matching of G;
(b) $\chi^{\prime}(G) \leq \chi^{\prime}(H)$, where $\chi^{\prime}(G)$ is the chromatic index of G;
(c) If M is a perfect matching of H, then $f^{-1}(M)$ is a perfect matching of G;
(d) $k(G) \leq k(H)$.
(e) For every even subgraph C of $H, f^{-1}(C)$ is an even subgraph of G;
(f) For every bridge e of G, the edge $f(e)$ is a bridge of H.

Some properties

Lemma

Suppose that G and H are cubic graphs with $H \prec G$, and let f be an H-coloring of G. Then:
(a) If M is any matching of H, then $f^{-1}(M)$ is a matching of G;
(b) $\chi^{\prime}(G) \leq \chi^{\prime}(H)$, where $\chi^{\prime}(G)$ is the chromatic index of G;
(c) If M is a perfect matching of H, then $f^{-1}(M)$ is a perfect matching of G;
(d) $k(G) \leq k(H)$.
(e) For every even subgraph C of $H, f^{-1}(C)$ is an even subgraph of G;
(f) For every bridge e of G, the edge $f(e)$ is a bridge of H.
(g) If H is bridgeless, then G is also bridgeless.

Petersen coloring conjecture

Petersen coloring conjecture

Jaeger's unifying conjecture

Petersen coloring conjecture

Jaeger's unifying conjecture

In 1988, Jaeger presented a conjecture, that has unified the conjectures about perfect matchings and cycle covers.

Petersen coloring conjecture

Jaeger's unifying conjecture

In 1988, Jaeger presented a conjecture, that has unified the conjectures about perfect matchings and cycle covers.

Conjecture (P_{10}-conjecture, 1988)

Petersen coloring conjecture

Jaeger's unifying conjecture

In 1988, Jaeger presented a conjecture, that has unified the conjectures about perfect matchings and cycle covers.

Conjecture (P_{10}-conjecture, 1988)
For any bridgeless cubic graph G, one has: $P_{10} \prec G$.

Consequences of P_{10}-conjecture

Consequences of P_{10}-conjecture

Observation

Consequences of P_{10}-conjecture

Observation
P_{10}-conjecture implies Berge-Fulkerson conjecture.

Consequences of P_{10}-conjecture

Observation
P_{10}-conjecture implies Berge-Fulkerson conjecture.
Observation

Consequences of P_{10}-conjecture

Observation
P_{10}-conjecture implies Berge-Fulkerson conjecture.
Observation
P_{10}-conjecture implies $(5,2)$ Even Subgraph Cover Conjecture.

Consequences of P_{10}-conjecture

Observation
P_{10}-conjecture implies Berge-Fulkerson conjecture.
Observation
P_{10}-conjecture implies $(5,2)$ Even Subgraph Cover Conjecture.
Observation

Consequences of P_{10}-conjecture

Observation
P_{10}-conjecture implies Berge-Fulkerson conjecture.
Observation
P_{10}-conjecture implies $(5,2)$ Even Subgraph Cover Conjecture.
Observation
P_{10}-conjecture implies Shortest Cycle Cover Conjecture.

The relationship among the six conjectures

The relationship among the six conjectures

The relationship

The relationship among the six conjectures

The relationship

Figure 11: The relationship among the six conjectures.

Normal edge-colorings of cubic graphs

Snarks and their Petersen colorings

Snarks and their Petersen colorings

Snark

Snarks and their Petersen colorings

Snark

A snark is a bridgeless cubic graph that is not 3-edge-colorable.

Snarks and their Petersen colorings

Snark

A snark is a bridgeless cubic graph that is not 3-edge-colorable.
Observation

Snarks and their Petersen colorings

Snark

A snark is a bridgeless cubic graph that is not 3-edge-colorable.

Observation

If a cubic graph G admits a P_{10}-coloring f, such that for an edge e of P_{10} $f^{-1}(e)=\emptyset$,

Snarks and their Petersen colorings

Snark

A snark is a bridgeless cubic graph that is not 3-edge-colorable.

Observation

If a cubic graph G admits a P_{10}-coloring f, such that for an edge e of P_{10} $f^{-1}(e)=\emptyset$, then G is 3-edge-colorable.

Snarks and their Petersen colorings

Snark

A snark is a bridgeless cubic graph that is not 3-edge-colorable.

Observation

If a cubic graph G admits a P_{10}-coloring f, such that for an edge e of P_{10} $f^{-1}(e)=\emptyset$, then G is 3-edge-colorable.

Corollary

Snarks and their Petersen colorings

Snark

A snark is a bridgeless cubic graph that is not 3-edge-colorable.

Observation

If a cubic graph G admits a P_{10}-coloring f, such that for an edge e of P_{10} $f^{-1}(e)=\emptyset$, then G is 3-edge-colorable.

Corollary

If G is a snark, then any P_{10}-coloring of G must use all edges of P_{10}.

Poor, rich edges and normal edge-colorings of cubic graphs

Poor, rich edges and normal edge-colorings of cubic graphs

Definition

Poor, rich edges and normal edge-colorings of cubic graphs

Definition

Let f be a k-edge-coloring of a cubic graph G, and let $S_{f}(w)$ be the set of colors of edges of G incident to the vertex w.

Poor, rich edges and normal edge-colorings of cubic graphs

Definition

Let f be a k-edge-coloring of a cubic graph G, and let $S_{f}(w)$ be the set of colors of edges of G incident to the vertex w. Then an edge $e=u v$ is

Poor, rich edges and normal edge-colorings of cubic graphs

Definition

Let f be a k-edge-coloring of a cubic graph G, and let $S_{f}(w)$ be the set of colors of edges of G incident to the vertex w. Then an edge $e=u v$ is

- poor, if $\left|S_{f}(u) \cup S_{f}(v)\right|=3$,

Poor, rich edges and normal edge-colorings of cubic graphs

Definition

Let f be a k-edge-coloring of a cubic graph G, and let $S_{f}(w)$ be the set of colors of edges of G incident to the vertex w. Then an edge $e=u v$ is

- poor, if $\left|S_{f}(u) \cup S_{f}(v)\right|=3$,
- rich, if $\left|S_{f}(u) \cup S_{f}(v)\right|=5$.

Poor, rich edges and normal edge-colorings of cubic graphs

Definition

Let f be a k-edge-coloring of a cubic graph G, and let $S_{f}(w)$ be the set of colors of edges of G incident to the vertex w. Then an edge $e=u v$ is

- poor, if $\left|S_{f}(u) \cup S_{f}(v)\right|=3$,
- rich, if $\left|S_{f}(u) \cup S_{f}(v)\right|=5$.

Definition

Poor, rich edges and normal edge-colorings of cubic graphs

Definition

Let f be a k-edge-coloring of a cubic graph G, and let $S_{f}(w)$ be the set of colors of edges of G incident to the vertex w. Then an edge $e=u v$ is

- poor, if $\left|S_{f}(u) \cup S_{f}(v)\right|=3$,
- rich, if $\left|S_{f}(u) \cup S_{f}(v)\right|=5$.

Definition

A k-edge-coloring f of a cubic graph G is normal, if any edge of G is poor or rich in f.

Poor, rich edges and normal edge-colorings of cubic graphs

Definition

Let f be a k-edge-coloring of a cubic graph G, and let $S_{f}(w)$ be the set of colors of edges of G incident to the vertex w. Then an edge $e=u v$ is

- poor, if $\left|S_{f}(u) \cup S_{f}(v)\right|=3$,
- rich, if $\left|S_{f}(u) \cup S_{f}(v)\right|=5$.

Definition

A k-edge-coloring f of a cubic graph G is normal, if any edge of G is poor or rich in f. Let $\chi_{N}(G)$ be the smallest k for which G admits a normal k-edge-coloring.

Poor, rich edges and normal edge-colorings of cubic graphs

Definition

Let f be a k-edge-coloring of a cubic graph G, and let $S_{f}(w)$ be the set of colors of edges of G incident to the vertex w. Then an edge $e=u v$ is

- poor, if $\left|S_{f}(u) \cup S_{f}(v)\right|=3$,
- rich, if $\left|S_{f}(u) \cup S_{f}(v)\right|=5$.

Definition

A k-edge-coloring f of a cubic graph G is normal, if any edge of G is poor or rich in f. Let $\chi_{N}(G)$ be the smallest k for which G admits a normal k-edge-coloring. Clearly, $\chi_{N}(G) \geq 3$ for any cubic graph G.

Poor, rich edges and normal edge-colorings of cubic graphs

Definition

Let f be a k-edge-coloring of a cubic graph G, and let $S_{f}(w)$ be the set of colors of edges of G incident to the vertex w. Then an edge $e=u v$ is

- poor, if $\left|S_{f}(u) \cup S_{f}(v)\right|=3$,
- rich, if $\left|S_{f}(u) \cup S_{f}(v)\right|=5$.

Definition

A k-edge-coloring f of a cubic graph G is normal, if any edge of G is poor or rich in f. Let $\chi_{N}(G)$ be the smallest k for which G admits a normal k-edge-coloring. Clearly, $\chi_{N}(G) \geq 3$ for any cubic graph G. $\chi_{N}(G)=3$, if and only if $\chi^{\prime}(G)=3$.

An example of a normal edge-coloring of a cubic graph

An example of a normal edge-coloring of a cubic graph

An example

An example of a normal edge-coloring of a cubic graph

An example

Figure 12: A cubic graph that requires 7 colors in a normal coloring.

An example of a normal edge-coloring of a cubic graph

An example

Figure 12: A cubic graph that requires 7 colors in a normal coloring.

The bridge is poor.

An example of a normal edge-coloring of a cubic graph

An example

Figure 12: A cubic graph that requires 7 colors in a normal coloring.

The bridge is poor. All other edges are rich.

An example of a normal edge-coloring of a cubic graph

An example

Figure 12: A cubic graph that requires 7 colors in a normal coloring.

The bridge is poor. All other edges are rich. It can be shown that $\chi_{N}(G)=$ 7.

An example of a cubic graph without a normal k-edge-coloring

An example of a cubic graph without a normal k-edge-coloring

Question

An example of a cubic graph without a normal k-edge-coloring

Question

Does any cubic graph admit a normal k-edge-coloring for some k ?

An example of a cubic graph without a normal k-edge-coloring

Question

Does any cubic graph admit a normal k-edge-coloring for some k ?
An example

An example of a cubic graph without a normal k-edge-coloring

Question

Does any cubic graph admit a normal k-edge-coloring for some k ?
An example

Figure 13: An example of a cubic graph that does not admit a normal coloring.

Why normal colorings are important

Why normal colorings are important

Proposition (Jaeger, 1988)

Why normal colorings are important

Proposition (Jaeger, 1988)

A cubic graph G admits a P_{10}-coloring (i.e. $P_{10} \prec G$), if and only if $\chi_{N}^{\prime}(G) \leq 5$.

Why normal colorings are important

Proposition (Jaeger, 1988)
A cubic graph G admits a P_{10}-coloring (i.e. $P_{10} \prec G$), if and only if $\chi_{N}^{\prime}(G) \leq 5$.

Conjecture (P_{10}-conjecture restated)

Why normal colorings are important

Proposition (Jaeger, 1988)
A cubic graph G admits a P_{10}-coloring (i.e. $P_{10} \prec G$), if and only if $\chi_{N}^{\prime}(G) \leq 5$.

Conjecture (P_{10}-conjecture restated)
For any bridgeless cubic graph G, we have $\chi_{N}^{\prime}(G) \leq 5$.

Our result

A question

A question

Question

A question

Question

What is the smallest k, such that for any simple cubic graph G we have $\chi_{N}^{\prime}(G) \leq k$?

A question

Question

What is the smallest k, such that for any simple cubic graph G we have $\chi_{N}^{\prime}(G) \leq k$?

Summary of prior results

A question

Question

What is the smallest k, such that for any simple cubic graph G we have $\chi_{N}^{\prime}(G) \leq k$?

Summary of prior results

- By our previous considerations, we have $k \geq 7$.

A question

Question

What is the smallest k, such that for any simple cubic graph G we have $\chi_{N}^{\prime}(G) \leq k$?

Summary of prior results

- By our previous considerations, we have $k \geq 7$.
- L. D. Andersen in 1992 proved that any simple cubic graph admits a 10-edge-coloring, such that each edge is rich. Thus $k \leq 10$.

A question

Question

What is the smallest k, such that for any simple cubic graph G we have $\chi_{N}^{\prime}(G) \leq k$?

Summary of prior results

- By our previous considerations, we have $k \geq 7$.
- L. D. Andersen in 1992 proved that any simple cubic graph admits a 10-edge-coloring, such that each edge is rich. Thus $k \leq 10$.
- R. Šámal and H. Bílková in 2012 proved that any simple cubic graph admits a normal 9 -edge-coloring. Thus $k \leq 9$.

A question

Question

What is the smallest k, such that for any simple cubic graph G we have $\chi_{N}^{\prime}(G) \leq k$?

Summary of prior results

- By our previous considerations, we have $k \geq 7$.
- L. D. Andersen in 1992 proved that any simple cubic graph admits a 10-edge-coloring, such that each edge is rich. Thus $k \leq 10$.
- R. Šámal and H. Bílková in 2012 proved that any simple cubic graph admits a normal 9 -edge-coloring. Thus $k \leq 9$.

Theorem (Our main result)

A question

Question

What is the smallest k, such that for any simple cubic graph G we have $\chi_{N}^{\prime}(G) \leq k$?

Summary of prior results

- By our previous considerations, we have $k \geq 7$.
- L. D. Andersen in 1992 proved that any simple cubic graph admits a 10-edge-coloring, such that each edge is rich. Thus $k \leq 10$.
- R. Šámal and H. Bílková in 2012 proved that any simple cubic graph admits a normal 9 -edge-coloring. Thus $k \leq 9$.

Theorem (Our main result)
For any simple cubic graph G, we have $\chi_{N}^{\prime}(G) \leq 7$.

Future work

Improving our result

Improving our result

Bridgeless cubic graphs

Improving our result

Bridgeless cubic graphs

- Proving $\chi_{N}^{\prime}(G) \leq 7$ in the class of bridgeless cubic graphs is relatively easy (8-flow theorem).

Improving our result

Bridgeless cubic graphs

- Proving $\chi_{N}^{\prime}(G) \leq 7$ in the class of bridgeless cubic graphs is relatively easy (8-flow theorem).
- Proving $\chi_{N}^{\prime}(G) \leq 5$ in the class of bridgeless cubic graphs amounts to proving P_{10}-conjecture, which is hard.

Improving our result

Bridgeless cubic graphs

- Proving $\chi_{N}^{\prime}(G) \leq 7$ in the class of bridgeless cubic graphs is relatively easy (8-flow theorem).
- Proving $\chi_{N}^{\prime}(G) \leq 5$ in the class of bridgeless cubic graphs amounts to proving P_{10}-conjecture, which is hard.

Conjecture (Intermediate conjecture)

Improving our result

Bridgeless cubic graphs

- Proving $\chi_{N}^{\prime}(G) \leq 7$ in the class of bridgeless cubic graphs is relatively easy (8-flow theorem).
- Proving $\chi_{N}^{\prime}(G) \leq 5$ in the class of bridgeless cubic graphs amounts to proving P_{10}-conjecture, which is hard.

Conjecture (Intermediate conjecture)
For any bridgeless cubic graph G, we have $\chi_{N}^{\prime}(G) \leq 6$.

THANK YOU!

