Worksheet 8

- (1) List the ordered pairs in the relation R from $A = \{0, 1, 2, 3, 4\}$ to $B = \{0, 1, 2, 3\}$, where $(a, b) \in R$ if and only if
 - (a) a = b(d) $a \mid b$ (b) a + b = 4(e) gcd(a, b) = 1(c) a > b(f) lcm(a, b) = 2
- (2) (a) Is the "divides" relation on the set of positive integers reflexive? (b) Is the "divides" relation on the set of positive integers transitive?
- (3) Determine whether the relation R on the set of all people is reflexive, symmetric, antisymmetric, and/or transitive, where $(a, b) \in R$ if and only if
 - (a) a is taller than b.
 - (b) a and b were born on the same day.
 - (c) a has the same first name as b.
 - (d) a and b have a common grandparent.
- (4) Determine whether the relation R on the set of all real numbers is reflexive, symmetric, antisymmetric, and/or transitive, where $(x, y) \in R$ if and only if
 - (a) x + y = 0
 - (b) $x = \pm y$
 - (c) x y is a rational number
 - (d) x = 2y
 - (e) xy > 0
 - (f) xy = 0
 - (g) x = 1
 - (h) x = 1 or y = 1
- (5) A relation R on the set A is **irreflexive** if for every $a \in A$, $(a, a) \notin R$. That is, R is irreflexive if no elements in A is related to itself.
 - (a) Which relations in Exercise 3 are irreflexive?
 - (b) Which relations in Exercise 4 are irreflexive?
- (6) A relation R is called **asymmetric** if $(a, b) \in R$ implies that $(b, a) \notin R$.
 - (a) Which relations in Exercise 3 are asymmetric?
 - (b) Which relations in Exercise 4 are asymmetric?
- (7) Give an example of a relation on a set that is
 - (a) both symmetric and antisymmetric.
 - (b) neither symmetric nor antisymmetric.
- (8) How many relations are there on a set with n elements that are
 - (a) symmetric? (d) irreflexive? (b) antisymmetric? (e) reflexive and symmetric?
 - (c) asymmetric?

- (f) neither reflexive nor irreflexive?
- (9) Consider the following relations on the set of real numbers:

$$R_1 = \{(a, b) \in \mathbb{R}^2 | a > b\}, \text{ the "greater than" relation}$$
$$R_2 = \{(a, b) \in \mathbb{R}^2 | a \ge b\}, \text{ the "greater than or equal to" relation}$$

Find

- (a) $R_1 \setminus R_2$ (d) $R_1 \circ R_2$ (e) $R_2 \circ R_2$ (b) $R_2 \setminus R_1$ (c) $R_1 \circ R_1$ (f) $R_2 \circ R_1$
- (10) Let R be the relation $R = \{(a, b) \mid a \text{ divides } b\}$ on the set of positive integers. Find R^{-1} .

- (11) Let R be the relation on the set of real numbers such that xRy if and only if x and y are real numbers that differ by less than 1, that is |x y| < 1. Show that R is not an equivalence relation.
- (12) Show that the "divides" relation is the set of positive integers in not an equivalence relation.
- (13) Let R be the relation on the set of ordered pairs of positive integers such that $((a,b), (c,d)) \in R$ if and only if a + d = b + c. Show that R is an equivalence relation.
- (14) Let R be the relation on the set of ordered pairs of positive integers such that $((a, b), (c, d)) \in R$ if and only if ad = bc. Show that R is an equivalence relation.
- (15) (a) Show that the relation R on the set of all differentiable functions from \mathbb{R} to \mathbb{R} consisting of all pairs (f, g) such that f'(x) = g'(x) for all real numbers x is an equivalence relation.
 - (b) Which functions are in the same equivalence class as the function $f(x) = x^2$?
- (16) Let n be a positive integer. For integers, a, b we define $a \sim b$ if $n \mid (a b)$. Show that \sim is an equivalence relation on the set of integers.
- (17) (a) On \mathbb{R}^2 , define $(a_1, a_2) \sim (b_1, b_2)$ if $a_1^2 + a_2^2 = b_1^2 + b_2^2$. Is ~ an equivalence relation?
 - (b) Let A be the set of all integers and let B be the set of all nonzero integers. On the set $S = A \times B$ of ordered pairs, define $(m, n) \sim (p, q)$ if mq = np. Is \sim an equivalence relation?
- (18) For each of the following relations on R, determine which of the three conditions of an equivalence relation hold.
 (a) For a, b ∈ R, define a ~ b if a b ∈ Q, where Q is the set of rational numbers.
 (b) For a, b ∈ R, define a ~ b if |a b| ≤ 1.
- (19) In \mathbb{R}^3 , consider the standard (x, y, z)-coordinate system. We can define a partition of \mathbb{R}^3 by using planes parallel to the (x, y)-plane. Describe the corresponding equivalence relation by giving conditions on the coordinates x, y, z.
- (20) Let S be a set and let $2^S = \{A | A \subseteq S\}$ be the collection of all subsets of S. Define ~ on 2^S by letting $A \sim B$ if and only if there exists a one-to-one correspondence from A to B.
 - (a) Show that \sim is an equivalence relation on 2^S .
 - (b) If $S = \{1, 2, 3, 4\}$, list the elements of 2^S and find each equivalence class determined by \sim .