(1) Prove that

$$
1+2+2^{2}+\cdots+2^{n}=2^{n+1}-1
$$

for all nonnegative integers n.
(2) Prove that the inequality $n<2^{n}$ holds for all positive integers n.
(3) Prove that $2^{n}<n$! for every integer n with $n \geq 4$.
(4) Use mathematical induction to prove this formula for the sum of a finite number of terms of a geometric progression with initial term a and common ratio r :

$$
\sum_{j=0}^{n} a r^{j}=a+a r+a r^{2}+\cdots a r^{n}=\frac{a r^{n+1}-a}{r-1} \text { when } r \neq 1
$$

where n is a nonnegative integer.
(5) The harmonic numbers $H_{j}, j=1,2,3, \ldots$, are defined by

$$
H_{j}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{j}
$$

Use mathematical induction to show that

$$
H_{2^{n}} \geq 1+\frac{n}{2}
$$

whenever n is a nonnegative integer.
(6) Use mathematical induction to prove that $n^{3}-n$ is divisible by 3 whenever n is a positive integer.
(7) Use mathematical induction to prove that $7^{n+2}+8^{2 n+1}$ is divisible by 57 for every nonnegative integer n.
(8) Use mathematical induction to show that if S is a finite set with n elements, where n is a nonnegative integer, then S has 2^{n} subsets.
(9) Use mathematical induction to prove the following generalization of one of De Morgan's laws:
(10) (a) Find a formula for

$$
\overline{\bigcap_{j=1}^{n} A_{j}}=\bigcup_{j=1}^{n} \overline{A_{j}}
$$

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}
$$

by examining the values of this expression for small values of n.
(b) Prove the formula you conjectured in part (a).

