(1) Let p and q be the statements.
p : I bought a lottery ticket this week.
q : I won the million dollar jackpot.
Express each of these statements as an English sentence.
(a) $\neg p$
(d) $p \wedge q$
(g) $\neg p \wedge \neg q$
(b) $p \vee q$
(e) $p \leftrightarrow q$
(h) $\neg p \vee(p \wedge q)$
(c) $p \rightarrow q$
(f) $\neg p \rightarrow \neg q$
(2) Let p, q, and r be the propositions.
p : You get an A on the final exam.
q : You do every exercise in this book.
r : You get an A in this class.
Write these statements using p, q, and r and logical connectives (including negations).
(a) You get an A in this class, but you do not do every exercise in this book.
(b) You get an A on the final, you do every exercise in this book, and you get an A in this class.
(c) To get an A in this class, it is necessary for you to get an A on the final.
(d) You get an A on the final, but you don't do every exercise in this book; nevertheless, you get an A in this class.
(e) Getting an A on the final and doing every exercise in this book is sufficient for getting an A in this class.
(f) You will get an A in this class if and only if you either do every exercise in this book or you get an A on the final.
(3) Determine whether each of these conditional statements is true or false.
(a) If $1+1=2$, then $2+2=5$.
(b) If $1+1=3$, then $2+2=4$.
(c) If $1+1=3$, then $2+2=5$.
(d) If monkeys can fly, then $1+1=3$.
(4) Determine whether these biconditionals are true or false.
(a) $2+2=4$ if and only if $1+1=2$.
(b) $1+1=2$ if and only if $2+3=4$.
(c) $1+1=3$ if and only if monkeys can fly.
(d) $0>1$ if and only if $2>1$
(5) State the converse, contrapositive, and inverse of each of these conditional statements.
(a) If it snows today, I will ski tomorrow.
(b) I come to class whenever there is going to be a quiz.
(c) A positive integer is a prime only if it has no divisors other than 1 and itself.
(6) Construct a truth table for each of these compound statements.
(a) $p \wedge \neg p$
(d) $(p \vee q) \rightarrow(p \wedge q)$
(b) $p \vee \neg p$
(e) $(p \rightarrow q) \leftrightarrow(\neg q \rightarrow \neg p)$
(c) $(p \vee \neg q) \rightarrow q$
(f) $(p \rightarrow q) \rightarrow(q \rightarrow p)$

