(1) Determine whether f is a function from $\mathbb Z$ to $\mathbb R$ if (a) $f(n)=\pm n$

(b)
$$f(n) = \sqrt{n^2 + 1}$$

(c)
$$f(n) = 1/(n^2 - 4)$$

(2) Determine whether the function $f:\mathbb{Z}\times\mathbb{Z}\to\mathbb{Z}$ is onto if (a) f(m,n)=m+n

(b)
$$f(m,n) = m^2 + n^2$$

(c)
$$f(m, n) = m$$

(d)
$$f(m,n) = |n|$$

(e)
$$f(m,n) = m - n$$

(3)	Consider these functions from the set of students	in a	discrete	mathematics	class.	Under what	conditions	is the
` '	function one-to-one if it assigns to a student his or					0		

- (a) mobile phone number
- (b) student identification number
- (c) final grade in the class
- (d) home town
- (4) Determine whether each of these functions is a bijection from \mathbb{R} to \mathbb{R} .
 - (a) f(x) = 2x + 1
 - (b) $f(x) = x^2 + 1$
 - (c) $f(x) = x^3$
 - (d) $f(x) = (x^2 + 1)/(x^2 + 2)$