(1) Determine whether f is a function from \mathbb{Z} to \mathbb{R} if
(a) $f(n)= \pm n$
(b) $f(n)=\sqrt{n^{2}+1}$
(c) $f(n)=1 /\left(n^{2}-4\right)$
(2) Determine whether the function $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ is onto if (a) $f(m, n)=m+n$
(b) $f(m, n)=m^{2}+n^{2}$
(c) $f(m, n)=m$
(d) $f(m, n)=|n|$
(e) $f(m, n)=m-n$
(3) Consider these functions from the set of students in a discrete mathematics class. Under what conditions is the function one-to-one if it assigns to a student his or her
(a) mobile phone number
(b) student identification number
(c) final grade in the class
(d) home town
(4) Determine whether each of these functions is a bijection from \mathbb{R} to \mathbb{R}.
(a) $f(x)=2 x+1$
(b) $f(x)=x^{2}+1$
(c) $f(x)=x^{3}$
(d) $f(x)=\left(x^{2}+1\right) /\left(x^{2}+2\right)$

