(1) Prove that for every real number $x,-(-x)=x$.
(2) Prove that for all real numbers x and $y, x=y$ if and only if $x-y=0$.
(3) Prove that for all real numbers x and $y,-x-y=-(x+y)$.
(4) Prove that for all positive real numbers x and $y, x \cdot y$ is also a positive real number.
(5) Prove that for every real number $x, x \neq 0$ if and only if $x^{2}>0$.
(6) Prove that for all real numbers w, x, y, and z, if $w<x$ and $y<z$, then $w+y<x+z$.

