Due by 8:05am on Friday, March 31

(1) Which of these relations on the set of all functions from \mathbb{Z} to \mathbb{Z} are equivalence relations? Determine the properties of an equivalence relation that the others lack.
(a) $\{(f, g) \mid f(1)=g(1)\}$.
(b) $\{(f, g) \mid f(0)=g(0)$ or $f(1)=g(1)\}$.
(c) $\{(f, g) \mid f(x)-g(x)=1$ for all $x \in \mathbb{Z}\}$.
(d) $\{(f, g) \mid$ for some $C \in \mathbb{Z}$, for all $x \in \mathbb{Z}, f(x)-g(x)=C\}$.
(e) $\{(f, g) \mid f(0)=g(1)$ and $f(1)=g(0)\}$.
(2) Determine whether the relation R on the set A is reflexive, irreflexive, symmetric, asymmetric, antisymmetric, or transitive.
(a) $A=\mathbb{Z} ; a R b$ if and only if $a \leq b+1$.
(b) $A=\mathbb{Z}^{+} ; a R b$ if and only if $|a-b| \leq 2$.
(c) $A=\mathbb{Z}^{+} ; a R b$ if and only if $a=b^{k}$ for some $k \in \mathbb{Z}^{+}$.
(d) $A=\mathbb{Z} ; a R b$ if and only if $a+b$ is even.
(e) $A=\mathbb{Z} ; a R b$ if and only if $|a-b|=2$.
(f) $A=\mathbb{R} ; a R b$ if and only if $a^{2}+b^{2}=4$.
(g) $A=\mathbb{Z}^{+} ; a R b$ if and only if $\operatorname{gcd}(a, b)=1$. In this case, we say that a and b are relatively prime.
(h) $A=$ the set of all ordered pairs of real numbers; $(a, b) R(c, d)$ if and only if $a=c$.
(i) $S=\{1,2,3,4\} ; A=S \times S ;(a, b) R(c, d)$ if and only if $a d=b c$.
(3) (a) Show that if a relation R on a set A is transitive and irreflexive, then it is asymmetric.
(b) A relation R on a set A is called circular if $a R b$ and $b R c$ imply $c R a$. Show that R is reflexive and circular if and only if it is an equivalence relation.
(c) Show that if R_{1} and R_{2} are equivalence relations on A, then $R_{1} \cap R_{2}$ is an equivalence relation on A.
(4) Define a relation on \mathbb{Z} by $x \sim y$ if and only if $x-y$ is even. Determine whether \sim is an equivalence relation on \mathbb{Z}. If it is, find the equivalence classes.
(5) Define a relation \sim on \mathbb{R} as follows: For $x, y \in \mathbb{R}$, we say $x \sim y$ if and only if $x^{2}-y^{2} \in \mathbb{Z}$.
(a) Prove that \sim defined above is an equivalence relation on \mathbb{R}.
(b) Give five different real numbers that are in the equivalence class $[\sqrt{2}]$.
(6) Define a relation \sim on \mathbb{R}^{2} as follows: For $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$, we say that $\left(x_{1}, x_{2}\right) \sim\left(y_{1}, y_{2}\right)$ if and only if both $x_{1}-y_{1}$ and $x_{2}-y_{2}$ are even integers. Is this relation an equivalence relation? Why or why not?

