Due by 8:05am on Friday, March 31

- (1) Which of these relations on the set of all functions from \mathbb{Z} to \mathbb{Z} are equivalence relations? Determine the properties of an equivalence relation that the others lack.
 - (a) $\{(f,g) \mid f(1) = g(1)\}.$
 - (b) $\{(f,g) | f(0) = g(0) \text{ or } f(1) = g(1)\}.$
 - (c) $\{(f,g) | f(x) g(x) = 1 \text{ for all } x \in \mathbb{Z}\}.$
 - (d) $\{(f,g) \mid \text{ for some } C \in \mathbb{Z}, \text{ for all } x \in \mathbb{Z}, f(x) g(x) = C \}.$
 - (e) $\{(f,g) | f(0) = g(1) \text{ and } f(1) = g(0)\}.$
- (2) Determine whether the relation R on the set A is reflexive, irreflexive, symmetric, asymmetric, antisymmetric, or transitive.
 - (a) $A = \mathbb{Z}$; aRb if and only if $a \le b + 1$.
 - (b) $A = \mathbb{Z}^+$; aRb if and only if $|a b| \le 2$.
 - (c) $A = \mathbb{Z}^+$; aRb if and only if $a = b^k$ for some $k \in \mathbb{Z}^+$.
 - (d) $A = \mathbb{Z}$; aRb if and only if a + b is even.
 - (e) $A = \mathbb{Z}$; aRb if and only if |a b| = 2.
 - (f) $A = \mathbb{R}$; aRb if and only if $a^2 + b^2 = 4$.
 - (g) $A = \mathbb{Z}^+$; aRb if and only if gcd(a, b) = 1. In this case, we say that a and b are relatively prime.
 - (h) A = the set of all ordered pairs of real numbers; (a, b)R(c, d) if and only if a = c.
 - (i) $S = \{1, 2, 3, 4\}; A = S \times S; (a, b)R(c, d) \text{ if and only if } ad = bc.$
- (3) (a) Show that if a relation R on a set A is transitive and irreflexive, then it is asymmetric.
 - (b) A relation R on a set A is called **circular** if aRb and bRc imply cRa. Show that R is reflexive and circular if and only if it is an equivalence relation.
 - (c) Show that if R_1 and R_2 are equivalence relations on A, then $R_1 \cap R_2$ is an equivalence relation on A.
- (4) Define a relation on \mathbb{Z} by $x \sim y$ if and only if x y is even. Determine whether \sim is an equivalence relation on \mathbb{Z} . If it is, find the equivalence classes.
- (5) Define a relation \sim on \mathbb{R} as follows: For $x, y \in \mathbb{R}$, we say $x \sim y$ if and only if $x^2 y^2 \in \mathbb{Z}$.
 - (a) Prove that \sim defined above is an equivalence relation on \mathbb{R} .
 - (b) Give five different real numbers that are in the equivalence class $\sqrt{2}$.
- (6) Define a relation ~ on \mathbb{R}^2 as follows: For $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$, we say that $(x_1, x_2) \sim (y_1, y_2)$ if and only if both $x_1 y_1$ and $x_2 y_2$ are even integers. Is this relation an equivalence relation? Why or why not?