Due by 8:05am on Friday, March 17

(1) What is wrong with this proof?

Theorem 0.1. If n^{2} is positive, then n is positive.
Proof. Suppose that n^{2} is positive. Because the conditional statement "If n is positive, then n^{2} is positive" is true, we can conclude that n is positive.
(2) What is wrong with this proof?

Theorem 0.2. If n is not positive, then n^{2} is not positive.
Proof. Suppose that n^{2} is positive. Because the conditional statement "If n is positive, then n^{2} is positive" is true, we can conclude that n is positive.
(3) Is the following argument correct? It supposedly shows that n is an even integer whenever n^{2} is an even integer.

Suppose that n^{2} is even. Then $n^{2}=2 k$ for some integer k. Let $n=2 l$ for some integer l. This shows that n is even.
(4) Prove or disprove that the product of two irrational numbers is irrational.
(5) Prove that if x is irrational, then $1 / x$ is irrational.
(6) Show that if n is an integer and $n^{3}+5$ is odd, then n is even using
(a) a proof by contraposition.
(b) a proof by contradiction.
(7) Prove that if n is an integer and $3 n+2$ is even, then n is even using
(a) a proof by contraposition.
(b) a proof by contradiction.
(8) Use a proof by contradiction to prove that the sum of an irrational number and a rational number is irrational.
(9) Use a direct proof to show that every odd integer is the difference of two squares.
(10) Prove that if n is a perfect square, then $n+2$ is not a perfect square.
(11) Use a proof by contraposition to show that if $x+y \geq 2$, where x and y are real numbers, then $x \geq 1$ or $y \geq 1$.
(12) Prove the proposition $P(0)$, where $P(n)$ is the proposition "If n is a positive integer greater than 1 , then $n^{2}>n$." What kind of proof did you use?
(13) Let $P(n)$ be the proposition "If a and b are positive real numbers, then $(a+b)^{n} \geq a^{n}+b^{n}$." Prove that $P(1)$ is true. What kind of proof did you use?
(14) Prove that if n is a positive integer, then n is even if and only if $7 n+4$ is even.
(15) Show that these statements about the integer x are equivalent:
(i) $3 x+2$ is even, (ii) $x+5$ is odd, (iii) x^{2} is even.

