Due by 4pm on Friday, February 24

- (1) Find A^2 if
 - (a) $A = \{0, 1, 3\}$
 - (b) $A = \{1, 2, a, b\}$
- (2) Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ if and only if $A \subseteq B$
- (3) Translate each of these quantifications into English and determine its truth value.
 - (a) $\forall x \in \mathbb{R} (x^2 \neq -1)$ (b) $\exists x \in \mathbb{Z} (x^2 = 2)$ (c) $\forall x \in \mathbb{Z} (x^2 > 0)$ (d) $\exists x \in \mathbb{R} (x^2 = x)$
- (4) Let A be a set. Show that $\emptyset \times A = A \times \emptyset = \emptyset$
- (5) Show that if $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$
- (6) Let A be the set of students who live within one mile of school and let B be the set of students who walk to classes. Describe the students in each of these sets.
 - $\begin{array}{ll} \text{(a)} & A \cap B & & \text{(c)} & A \setminus B \\ \text{(b)} & A \cup B & & \text{(d)} & B \setminus A \end{array} \end{array}$
- (7) Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{0, 3, 6\}$. Find

$$\begin{array}{ll} \text{(a)} & A \cap B & & \text{(c)} & A \setminus B \\ \text{(b)} & A \cup B & & \text{(d)} & B \setminus A \end{array} \end{array}$$

- (8) Assume that A is a subset of some underlying universal set U.
 - (a) Prove the identity laws
 - (b) Prove the domination laws
 - (c) Prove the complement laws
 - (d) Prove the second De Morgan's law by showing that if A and B are sets, then $\overline{A \cup B} = \overline{A} \cap \overline{B}$.
- (9) Show that if A and B are sets with $A \subseteq B$, then
 - (a) $A \cup B = B$
 - (b) $A \cap B = A$

(10) Find $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$ if for every positive integer *i*,

- (a) $A_i = \{i, i+1, i+2, \ldots\}$
- (b) $A_i = \{0, i\}$
- (c) $A_i = (0, i)$, that is, the set of real numbers x with 0 < x < i.
- (d) $A_i = (i, \infty)$, that is, the set of real numbers x with x > i.