1. Find a parametrization of the portion S of the cone with equation $x^{2}+y^{2}=z^{2}$ lying above or below the disk $x^{2}+y^{2} \leq 4$. Specify the domain D of the parametrization.
2. Describe the surface parameterized by

$$
G(\theta, z)=(R \cos \theta, R \sin \theta, z), \quad 0 \leq \theta<2 \pi, \quad-\infty<z<\infty
$$

where R is fixed.
3. Describe the surface parameterized by

$$
G(\theta, \phi)=(R \cos \theta \sin \phi, R \sin \theta \sin \phi, R \cos \phi), \quad 0 \leq \theta<2 \pi, \quad 0<\phi<\pi
$$

where R is fixed.
4. Match each parametrization with the corresponding surface in the following figure.
(a) $(u, \cos v, \sin v)$
(b) $(u, u+v, v)$
(c) $\left(u, v^{3}, v\right)$
(d) $(\cos u \sin v, 3 \sin u \sin v, \cos v)$
(e) $(u, u(2+\cos v), u(2+\sin v))$

(i)

(ii)

(iii)

(iv)

(v)
5. Find a parameterization for the paraboloid $z=1-x^{2}-y^{2}$.
6. Find a parameterization for the plane $2 x-y-z=2$.
7. Find an equation for the surface parameterized by

$$
G(u, v)=\left(u^{2}-v^{2}, u+v, u-v\right)
$$

8. Find a parameterization of the part of the cone $x^{2}+y^{2}=z^{2}$ between the planes $z=2$ and $z=5$.
9. Find a parameterization of the part of the cone $z^{2}=x^{2}+y^{2}$, where $z \geq 0$, contained within the cylinder $y^{2}+z^{2} \leq 1$.
10. Let S be the portion of the sphere $x^{2}+y^{2}+z^{2}=9$, where $1 \leq x^{2}+y^{2} \leq 4$ and $z \geq 0$. Find a parameterization of S.
