1. Let S be the solid region which is inside the sphere given by $x^{2}+y^{2}+z^{2}=4$ and above the plane where $z=1$. Assume that x, y, and z are measured in meters. Suppose the density of the solid region S is given by $\delta(x, y, z)=\frac{1}{x^{2}+y^{2}+z^{2}} \mathrm{~kg} / \mathrm{m}^{3}$. Find the total mass of the solid region S.
2. Use spherical coordinates to find the volume of the solid that lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=z$.
3. Let S be the solid region in the 1 st octant (i.e., where $x \geq 0, y \geq 0$, and $z \geq 0$) in \mathbb{R}^{3} which lies inside the (top) hemisphere where $x^{2}+y^{2}+z^{2}=4$ and $z \geq 0$ but lies outside the cylinder where $x^{2}+y^{2}=1$, and bounded by the planes with equations $y=x$ and $y \sqrt{3}=x$. Compute the volume of the solid region S.
4. Let S be the solid region which is bounded by the half-cones where $z=\sqrt{x^{2}+y^{2}}$ and $z \sqrt{3}=\sqrt{x^{2}+y^{2}}$, and inside the cylinder where $x^{2}+y^{2}=4$ and outside the cylinder where $x^{2}+y^{2}=1$. Assume that x, y, and z are measured in meters. Suppose the density of the solid region S is given by $\delta(x, y, z)=\frac{1}{x^{2}+y^{2}+z^{2}} \mathrm{~kg} / \mathrm{m}^{3}$. Find the total mass of the solid region S.
5. Find the volume of the region in the following figure.

6. Let S be the solid region above the sphere $x^{2}+y^{2}+z^{2}=6$ and below the paraboloid $z=4-x^{2}-y^{2}$.
(a) Sketch the projection of S onto the $x y$-plane.
(b) Compute the volume of the solid S.

7. Calculate the triple integral of $f(x, y, z)$ over the given region.
(a) $f(x, y, z)=1 ; x^{2}+y^{2}+z^{2} \leq 4 z ; z \geq \sqrt{x^{2}+y^{2}}$
(b) $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}} ; x^{2}+y^{2}+z^{2} \leq 2 z$
8. Express the triple integral in cylindrical coordinates.

$$
\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \int_{0}^{\sqrt{x^{2}+y^{2}}} f(x, y, z) d z d y d x
$$

